lt 23

RISCALDATORI DI LIQUIDO A FLUSSO CONTINUO DA INCORPORARE

- Riscaldatori a immersione:
- · Soluzioni per il riscaldamento ad aria:

Vedere il catalogo N.22

Vedere il catalogo N.24

Contattateci

Sezione 1	Sommario Pagina Cat23-2-1-1	2		P1-P2
Sezione 2		Introduzi	one storica Pagina Cat23-2-2-1~8	P1-P8
	University Day	Sommari	o dell'introduzione tecnicaPagina Cat23-2-2-9~11	P9-P11
	VP:R VR VV	Introduzi	one tecnica Pagina Cat23-2-2-12~82	P12-P82
Sezione 3	Tabella dei riferimenti Pagina	Cat23-2-3-1~4		P1-P4
	Riscaldatore di	liquido sta	andard Pagina Cat23-2-4-1~26	P1-P26
		9SU107	Riscaldatori dia. 70 mm, lunghezza 70 mm Max 1×3 kW (20W/cm ²) 1×1.5 kW (10W/cm ²)	Р3
		9SU113	Riscaldatori dia. 70 mm, lunghezza 130 mm Max 1×3 kW (10W/cm ²) 1×1.5 kW (5W/cm ²)	P4
		9SU231	Riscaldatori dia. 76 mm, lunghezza 313 mm Max 3 × 2.5 kW (10W/cm²) 3 × 1.25 kW (5W/cm²)	P5-P6
Sezione 4		9SUB31	Riscaldatori dia. 76 mm, lunghezza 313 mm, riscaldatori tubolari a spirale Max 3 × 3.2 kW (10W/cm²) 3 × 1.6 kW (5W/cm²)	P7-P8
Sezione 4		9SU331	Riscaldatori dia. 80 mm, lunghezza 313 mm Max 3x2.5kW (10W/cm²) 1.25 kW (5W/cm²)	P9-P10
		9SUC31	Riscaldatori dia. 80 mm, lunghezza 313 mm, riscaldatori tubolari a spirale Max 3 × 3.4 kW (10W/cm²) 3 × 1.7 kW (5W/cm²)	P11-P12
		9SU431	Riscaldatori dia. 88 mm, lunghezza 313 mm Max 3 × 2.5kW (10W/cm²) 3 × 1.25 kW (5W/cm²)	P13-P14
		9SUD31	Riscaldatori dia. 88 mm, lunghezza 313 mm, riscaldatori a spirale. Max 3 x 3.8 kW (10W/cm²)3 x 1.9 kW (5W/cm²)	P15-P16

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Sommario

	l
_	_

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

					-
	Opzioni e	e accessori	Pagina Cat23-2-5-1~16	P1-P16	Ī
		9SU831	Riscaldatori dia. 140 mm, lunghezza 313 mm, con scambiatore di calore tubolare. Max 3 x 3kW (10W/cm²), 3 x 1.5kW(5W/cm²)	P25-P26	
Sezione 4		9SU731	Riscaldatori dia. 125 mm, lunghezza 313 mm, Max 3x 4 kW+3x 2 kW (10W/cm²), 3 x 2 kW+3x 1 kW	P23-P24	
		9SU631	Riscaldatori dia. 125 mm, lunghezza 313 mm, Max 3 x 4 kW+3 x 2 kW (10W/cm²), 3 x 2 kW+3 x 1 kW	P21-P22	
		9SUE31	Riscaldatori dia. 100 mm, lunghezza 313 mm, riscaldatori a spirale Max 3 x 4.3 kW (10W/cm²) 3 x 2.15 kW (5W/cm²)	P19-P20	
		9SU531	Riscaldatori dia. 100 mm, lunghezza 313 mm. Max 3 x 3 kW (10W/cm²), 3 x 1.5 kW (5W/cm²).	P17-P18	

	Opzioni e	dccessori ragina cat25-2-5-1 10	P1-P10
		Opzioni di controllo e sicurezza della temperatura Termostati a disco precablati TCO precablato Termostati a lampada e capillari a reset manuale	P3-P6
	III	Rilevamento del flusso Interruttori di flusso Kit aggiuntivi per flussostati	P7-P11
Sezione 5		Opzioni di sicurezza idraulica Spurgatori d'aria manuali e automatici (sfiati dell'aria) Valvole di sicurezza	P12
	A Q	Opzioni dei serbatoi Gambe e fascette stringitubo Fili dell'elemento riscaldante Mantelli di isolamento in schiuma Mantelli isolanti in schiuma rivestita	P13-P14

. Questi prodotti non sono prodotti di Ultimheat

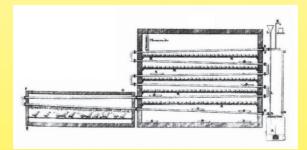
Introduzione storica

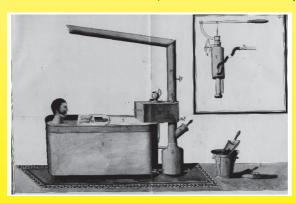
A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.


A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Scaldacqua a circolazione e ad accumulo.

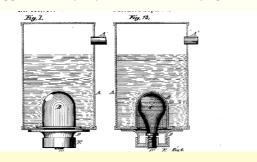
Nel 62 d.C., Seneca, nella sua opera "Questioni naturali" (quaestiones Naturales), libro III, descrive gli scaldacqua a circolazione d'acqua presenti a Roma in questo periodo come segue:


"Abbiamo l'abitudine di costruire serpentine, cilindri, e recipienti di diversi altri disegni in cui sottili tubi di rame sono disposti in spirali discendenti. Lo scopo è far sì che l'acqua incontri sempre lo stesso fuoco e scorra in uno spazio sufficiente a riscaldarla; così, entrando fredda, esce calda".

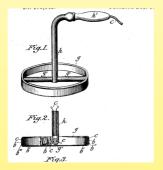

Gli scaldabagni con serbatoi per l'accumulo di acqua calda e con tubi di ingresso per l'acqua fredda e di uscita per l'acqua calda erano conosciuti e utilizzati in Italia in epoca romana.

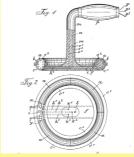
Sopra: Sezione di un bagno caldo di una villa romana a Pompei, che utilizza il principio del termosifone con due serbatoi A e A' che forniscono acqua alla vasca D tramite il tubo d. (Voyage pittoresque ou Description des royaumes de Naples et de Sicile, par l'abbé de Saint-Non (1781), vol. 2).

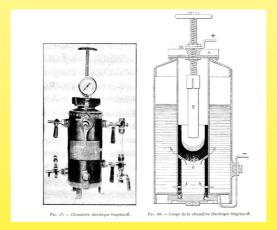
L'architetto romano Vitruvio, nel I secolo d.C., descrive simili scaldacqua a circolazione. Anche se tradotto e commentato nuovamente dall'architetto italiano Palladio nel 1556, nella sua opera su Vitruvio, questo sistema scomparve con la civiltà romana. Solo nel 1777 l'ingegnere francese Jean Simon Bonnemain riutilizzò il termosifone e lo perfezionò per l'uso del riscaldamento mediante la circolazione dell'acqua in una caldaia e in tubi. Fu utilizzato prima per riscaldare gli impianti del "Jardin du Roi" a Parigi, poi per riscaldare un grande incubatoio di pollame vicino a Nanterre con un preciso controllo della temperatura. Questo concetto di circolazione dell'acqua nei radiatori, attraverso la differenza di densità tra l'acqua calda e quella fredda, rimase praticamente sconosciuto per quasi 40 anni. Il marchese de Chabannes, emigrato francese in Inghilterra, copiò il lavoro di Bonnemain e migliorò questo sistema nel 1815 per riscaldare gli appartamenti con quello che verrà poi chiamato riscaldamento centralizzato ad acqua calda. Reimportato in Francia nel 1831, divenne popolare nella seconda metà del XIX secolo.


1777 Riscaldamento dell'incubatoio mediante caldaia e termosifone, di Jean Simon Bonnemain (Documento del Ultimheat Museum)

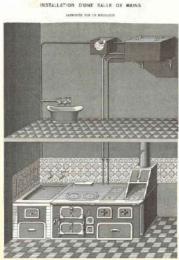
1820: Anche il riscaldamento delle vasche da bagno era uno dei centri di interesse dei ricercatori dell'epoca. M. Bizet, di Parigi, inventa una vasca riscaldata da termosifone (brevetto INPI), molto simile a quella utilizzata dai Romani. Per riscaldare la caldaia si utilizzava il carbone, sempre più diffuso a Parigi.


0

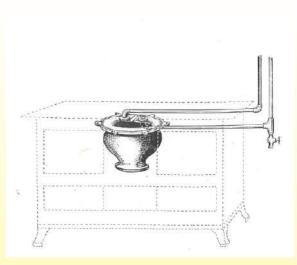

1896: Il signor Morineau, a Parigi, sviluppa uno scaldacqua istantaneo con scambiatore a tubi elicoidali, alimentato a gas, simile ai modelli già presenti sul mercato con il nome di "scaldabagni capillari", ma per la prima volta dotato di una valvola automatica che rileva il passaggio dell'acqua per accendere e spegnere il bruciatore.


1889, Daniel Smith, di St Louis (Missouri, USA), deposita un brevetto per uno scaldacqua elettrico ad accumulo, il cui riscaldamento è fornito da un filo di platino all'interno di una lampada di vetro, sotto una cupola di protezione. (US patent 411737). Sebbene questo brevetto sia rimasto inutilizzato, può essere considerato il capostipite degli scaldacqua elettrici.

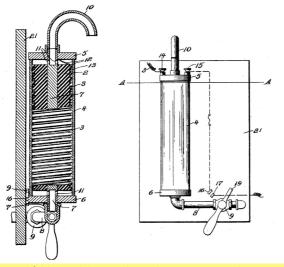
Tra il 1890 e il 1900, con lo sviluppo dell'energia elettrica, fiorirono le invenzioni che cercavano di utilizzarla come mezzo di riscaldamento per l'acqua e le case. In pochi anni furono depositati centinaia di brevetti, la maggior parte dei quali negli Stati Uniti, che furono i pionieri della distribuzione domestica di energia elettrica. Ma in Europa questa energia era allora molto costosa e la distribuzione elettrica era frammentaria e limitata alle esigenze di illuminazione. La legna, il carbone, il gas e il cherosene rimasero a lungo gli unici mezzi di riscaldamento dell'acqua. I precursori in Europa tra il 1890 e il 1892 furono Crompton (Inghilterra), Friedrich Wilhelm Schindler Jenny (Svizzera), Henriot e Lebrasseur (Francia). All'epoca, gli apparecchi elettrici per il riscaldamento dell'acqua erano limitati ai bollitori.

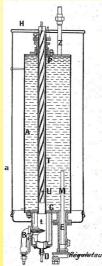


1891, lo svizzero Friedrich Wilhem Schindler-Jenny, residente a Kennelbach (Austria-Ungheria), realizza i primi riscaldatori a immersione, per il riscaldamento dei serbatoi d'acqua (Brevetto austro-ungarico n. 37527 e n. 13680 del 22 agosto 1891). Questi brevetti saranno estesi in Svizzera, Belgio, Francia, Italia, Inghilterra e Stati Uniti.



1900.La prima caldaia elettrica sembra essere stata quella dell'ingegnere russo Ougrimoff, presentata all'Esposizione Universale. Egli chiamò questo dispositivo "Calorifacteur électrique". Funzionava creando un arco elettrico tra due elettrodi ed era particolarmente utilizzato per produrre vapore. Nel 1923, l'azienda svizzera Oerlikon iniziò a produrre caldaie elettriche simili, chiamate caldaie a elettrodi, con il nome di Revel. Questa soluzione tecnica per la produzione di vapore e acqua calda è ancora prodotta da alcune aziende, soprattutto per caldaie ad alta potenza.


Le case signorili dei primi anni del XX secolo producevano generalmente acqua calda attraverso uno scambiatore di calore in ghisa chiamato "bouilleur" (caldaia) situato nell'atrio della stufa. Tramite termosifone, la caldaia alimenta un grande serbatoio d'acqua situato più in alto, isolato termicamente, antenato dei nostri scaldabagni ad accumulo e prefiguratore degli attuali sistemi chiamati REC (Renewable Energy). Questo sistema era comune in quasi tutti i cataloghi dei produttori di stufe per tutta la prima metà del secolo. Scambiatori simili erano installati sulle caldaie per il riscaldamento centrale con produzione di acqua calda.


1894 Bagno con acqua calda alimentato da una stufa con "Bouilleur" (Chappée Catalog, Ultimheat Museum)

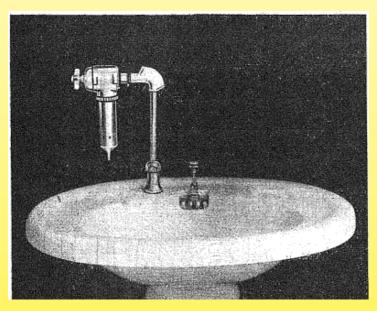
Scambiatore di calore" Bouilleur" montato all'interno di una stufa (Catalog of Ets Demoulin, Farciennes, 1932, Ultimheat Museum)

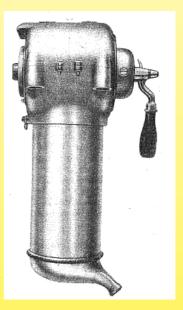
Nel febbraio del 1905, il cittadino americano Eli Sager chiede il brevetto per uno scaldabagno elettrico istantaneo.

Nel 1913 Ets Grouvelle e Arquembourg di Parigi svilupparono il primo scaldacqua a gas ad accumulo dotato di un controller di temperatura. "I Marsigliesi"

Nel 1915, mentre il resto d'Europa è in guerra, la Svizzera - che produce elettricità a basso costo attraverso dighe idroelettriche - assiste alla comparsa dei primi scaldabagni elettrici ad accumulo, descritti dalla rivista di Ingegneria Civile (22 maggio 1915).

"L'uso dell'elettricità, come calore per cucinare, tende a diffondersi ovunque l'elettricità possa essere prodotta a basso costo... M. Ringwald, direttore delle centrali elettriche della Svizzera Centrale a Lucerna, ha fatto all'Assemblea Generale della "Società Svizzera per l'uso delle cascate", una interessantissima conferenza sull'uso dell'elettricità per cucinare e riscaldare...La Società che gestisce l'oratore serve diverse località in cui vengono utilizzati molti apparecchi elettrici di cottura, per cui è possibile, quindi, fare serie affermazioni.....Un apparecchio basato sul principio dell'accumulo del calore è l'accumulatore di acqua calda, che riscuote un largo favore del pubblico in particolare quello con una capacità di 15-30 litri. L'apparecchio è costituito da un cilindro di lamiera spessa, circondato da una resistenza di riscaldamento facile da sostituire; il tutto è avvolto da un isolante.


L'apparecchio è collegato a una linea d'acqua; di notte, l'acqua si riscalda e la potenza consumata passa da 160 a 200 watt. Un interruttore automatico riduce la potenza consumata a 50 o 70 watt, sufficienti a compensare le perdite, quando l'acqua ha raggiunto una temperatura di 80-90 gradi. L'unità può essere collegata a qualsiasi luce per tubi. Poiché l'unità funziona prevalentemente di notte, l'elettricità viene conteggiata a un prezzo molto basso (5 centesimi per kilowattora), utilizza lo stesso contatore della luce e registra solo una frazione determinata dell'energia utilizzata per il riscaldamento dell'acqua. È stato riscontrato che nell'arco delle 24 ore questi dispositivi consumano, per 16-18 ore, la massima potenza".

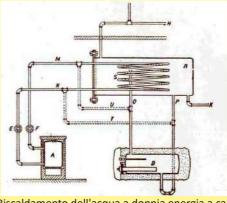


Nel 1917, grazie alle opportunità del mercato svizzero sopra descritte, un ingegnere svizzero, Fritz Sauter, che nel 1910 aveva sviluppato un sistema di elettrodomestici a commutazione automatica per l'utilizzo della tariffa notturna, inventò uno scaldacqua elettrico ad accumulo denominato "Cumulus", il cui nome è stato successivamente coniato in lingua francese per gli scaldacqua elettrici ad accumulo. La vendita in Francia iniziò nel 1922, quando Sauter aprì la sua fabbrica francese a Saint Louis. I serbatoi vengono isolati termicamente con granuli di sughero.

Nel 1928, Sauter dichiarava di averne venduti più di 15000 in tutto il mondo. (Documento del Ultimheat Museum).

1922, la società Presto, Parigi, sviluppa uno scaldacqua istantaneo montato su rubinetto in cui l'acqua viene riscaldata dalla sua stessa conduttività, senza fili scaldanti. Questa soluzione tecnica, che aveva il difetto di essere molto sensibile alla qualità dell'acqua, è tuttora utilizzata per produrre vapore nelle macchine per togliere la carta da parati e in altre apparecchiature simili. (Documenti del Ultimheat Museum)

A partire dal 1925, l'elettricità è sempre più disponibile nelle case e, poiché diventa meno costosa, proliferano gli scaldacqua ad accumulo e gli scaldabagni elettrici. Produttori come Lemercier ed Etelec-Electrocumul iniziano la loro produzione. Molti altri seguiranno.


1924: si diffondono gli scaldacqua elettrici istantanei montati sul rubinetto. Il marchio "Romor", prodotto da Moerch e Roumet a Parigi, ha un certo successo. Anche la società Tubulec li produrrà fino agli anni '50 (Documenti del Ultimheat Museum).

1928, Nell'est della Francia, le società elettriche stabiliscono tariffe speciali scontate per l'elettricità durante la notte. Pertanto, i produttori di scaldacqua ad accumulo installeranno le loro fabbriche soprattutto in questa parte della Francia.

1928 Scaldabagno elettrico "Electro-cumul" prodotto dal 1925 da Etelec, Etablissements électromécaniques de Strasbourg. Lo scaldacqua è del tipo a tubo singolo, con canna in ceramica su cui sono avvolti fili scaldanti. L'acqua viene riscaldata a 95°C. (Ultimheat Museum)

1927 Riscaldamento dell'acqua a doppia energia a carbone, Etelec, con scambiatore di calore tubolare all'interno di un serbatoio di accumulo. (Ultimheat Museum)

CHAUFFE-EAU ÉLECTRIQUES A ACCUMULATION ÉLECTRO-CUMUL-ALS-THOM DE 25 A 300 LITRES

Les appareils "ELECTRO-CUMUL-ALS-THOM" sont réputés pour le sois apporté à leur construction, le qualité de leur réservoirs, leur aspect élégant, le fini de leur peinture et surtout pour leur rendement élevé.

Ces chauffe-eau laissent à nos clients la plus grande latitude dans le choix de l'équipement. Ils sont, en effet, munis d'une "bride universelle" qui peut recevoir la plupart des thermostats couramment employés; neux-ei sont catalogués à part.

Les corps de chauffe sont normalement du type "à gaine" et pruvent être changés sans vidanger le réservoir, mais, sur demande, nous livrous une bride spéciale, interchangeable, recevant les corps de chauffe "Calrod". (Demander les conditions spéciales.)

1936. Arrivano sul mercato i riscaldatori tubolari con guaina, recentemente inventati negli Stati Uniti (Calrod-General Electric) e in Svezia (Baker); Als-thom li utilizza sui suoi scaldacqua ad accumulo Electro-cumum. (Documento del Ultimheat Museum).

1932 Riscaldatori tubolari con guaina Calrod (Ultimheat Museum)

I serbatoi dei riscaldatori ad accumulo o a circolazione di acqua calda sono poi realizzati in rame per i piccoli volumi o in acciaio zincato per i modelli di grandi dimensioni. In questi ultimi, le perdite dovute alla corrosione sono comuni, soprattutto in corrispondenza delle saldature, poiché la corrosione galvanica non è ancora ben conosciuta

1935: Si iniziano a considerare le pompe di calore per il riscaldamento con accumulo di acqua calda, prodotte durante la notte a basso costo di elettricità". Il principio della pompa di calore, di per sé molto seducente, non sembra destinato a essere utilizzato abitualmente. Porta a macchinari costosi, di solito non silenziosi e di delicata manutenzione. Richiede corpi ingombranti, come lo scambiatore di calore e l'evaporatore, e consente l'uso esclusivo di energia elettrica nelle ore non di punta con lo scaldabagno e con un volume di accumulo proibitivo a causa della bassa temperatura dell'acqua utilizzata. Il suo utilizzo pratico allo stato attuale della tecnica sembra difficile" (Bulletin de la société industrielle de l'Est, luglio 1935).

causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza

1943: Anzeige von Owens Corning für die Verwendung von Glaswolle in Haushaltsgeräten (Ultimheat Museum)

CHAUFFE-EAU ÉLECTRIQUE reaux corrosives

Il 10 ottobre 1939 viene pubblicato il brevetto depositato nel 1934 da Russell Games stayer di Owens Corning, relativo a un processo per la produzione industriale di lana di vetro. Gradualmente, dopo il 1945, i produttori di scaldacqua ad accumulo sostituiranno il sughero con la lana di vetro.

15 maggio 1941, Orrin E. Andrus, della EO Smith water heaters Cy (Cleveland, USA), propone una rondella sacrificale di zinco negli scaldacqua smaltati per ridurre la corrosione galvanica.

In seguito a una serie di articoli apparsi su "Transactions of the Electrochemical Society", vol. 90 (1946), pagg. 499-503, e su "Corrosion", Vol. 1, N. 2 (giugno 1945), pagg. 67 e seguenti, i produttori di scaldacqua immaginano gli anodi sacrificali. Nel 1946, l'anodo sacrificale di magnesio, nella sua forma attuale, è descritto nel brevetto US2459123A, depositato dalla Cleveland heaters company (Cleveland, USA), pubblicato nel gennaio 1949 In Francia, nel 1953, la società Lemercier Freres, sarà la prima a utilizzare anodi sacrificali di magnesio con il marchio "Magnodium".

1945-1950: I riscaldatori a immersione che utilizzano elementi tubolari inguainati sono diventati comuni, con i marchi Métallurgie du Nickel (Métanic) Rubanox, Tubalox, Spyrox, Baker, Calrod. Molti produttori francesi ne equipaggiano gli scaldabagni.

1946: la Company Ero (Sorgue, Francia) offre scaldacqua con serbatoi smaltati 200°C al posto di quelli zincati, cementati o metallizzati. Questo smalto è una resina termoindurente, tipo bachelite, la cui elasticità resiste all'espansione termica del serbatoio e che, isolando elettricamente le pareti, le protegge dalla corrosione galvanica. (Ultimheat Museum)

1947: L'azienda svizzera Rutschi inventa la pompa silenziosa a rotore bagnato "Perfecta", che diventerà in seguito lo standard universale per i circolatori del riscaldamento centrale.

Fino a quel momento, l'accelerazione del flusso d'acqua, che consente l'uso di tubi di piccolo diametro, era realizzata con sistemi ad aria compressa, o con l'uso della rete idrica cittadina per garantire il funzionamento della pompa o con rumorose unità di pompaggio elettriche che richiedevano l'uso di speciali guarnizioni "insonorizzate", e quindi il loro uso era limitato a un numero ristretto di case.

1952: Herbert Lindemann, ingegnere presso la "Lonza electric and Chemical Works" di Gample, Svizzera, sviluppa un processo per la produzione di schiume termoplastiche flessibili a cellule chiuse, contenenti PVC e altri componenti come l'NBR. Grazie alla loro eccellente resistenza alla temperatura, queste schiume saranno ampiamente utilizzate come isolanti termici negli apparecchi di condizionamento dell'aria. (Brevetto svizzero 322 586 del 25 novembre 1952).

1955-57: Prendono il volo le pompe di circolazione elettriche per il riscaldamento centrale, prodotte da Emergy a Lione, Julien e Mège a Lione e Salmson a Parigi e Laval (utilizzando la Licenza Perfecta a rotore bagnato), che consentono ai progettisti di sistemi di riscaldamento ad acqua calda di superare i vincoli del termosifone. (Documenti del Ultimheat Museum).

1955 In Francia, la società "Forges de Gueugnon" installa un laminatoio per la laminazione a freddo dell'acciaio inossidabile prodotto da Uginox a partire dal 1950 L'acciaio inossidabile, che fino a quel momento era utilizzato solo nelle apparecchiature professionali e industriali, inizierà presto a essere impiegato nel riscaldamento degli elettrodomestici. Nel 1958 inizia a essere utilizzato nelle vasche delle lavatrici.

1960: Si vedono i primi scaldacqua ad accumulo con serbatoi in acciaio inossidabile "Uginox". Questa eccellente soluzione tecnica, che evita la maggior parte dei rischi di corrosione, rimarrà tuttavia limitata agli apparecchi di fascia alta.

2000-2015. Il perfezionamento delle tecniche di saldatura automatizzate, il miglioramento delle attrezzature di produzione, le nuove materie prime e i componenti di sicurezza consentono lo sviluppo dei riscaldatori in acciaio inossidabile al 100% di questo catalogo.

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Introduzione tecnica

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Regole di progettazione dei nostri riscaldatori:

Qualità, efficienza, adattabilità, durata.

n riscaldatore di liquidi non è solo un assemblaggio di un serbatoio e di riscaldatori tubolari inguainati. Per ottenere un prodotto efficace, sicuro e affidabile, tutti i componenti devono essere sviluppati insieme per l'applicazione e devono essere scelte le migliori soluzioni tecniche. Per ottenere i migliori risultati tecnici ed economici, studiamo e produciamo noi stessi serbatoi, riscaldatori e la maggior parte degli altri componenti.

Il design originale e la costruzione innovativa dei nostri riscaldatori, <u>i primi sviluppati specificamente per i mercati delle pompe di calore</u> e delle energie rinnovabili, la loro tecnicità, i loro livelli di qualità e durata sono stati premiati in tutto il mondo dai principali produttori di apparecchi di riscaldamento.

Tutte le materie prime, tutti i dettagli costruttivi, tutte le operazioni di assemblaggio sono state studiate per offrire il miglior prodotto al miglior costo. Le ragioni delle nostre scelte tecniche sono dettagliate in questo documento.

Da esso, in base alle vostre specifiche e grazie alla nostra esperienza, il nostro reparto di progettazione esaminerà il prodotto più adatto alla vostra applicazione, con il miglior rapporto qualità-prezzo.

Poi, per convalidare il vostro prodotto, il nostro laboratorio, con oltre 200 macchine di test, può effettuare tutti i test che descriviamo qui di seguito.

I prodotti contenuti in questo catalogo sono progettati per essere incorporati in apparecchiature e apparecchi di riscaldamento e sono destinati esclusivamente agli OEM, agli utenti professionali, ai consulenti e ai dipartimenti di ingegneria, che conoscono e sono consapevoli delle norme tecniche e di sicurezza locali che devono rispettare.

Lo scopo di questa introduzione tecnica è quello di aiutare gli uffici tecnici a fare una scelta ragionevole tra tutte le soluzioni tecniche proposte.

Introduzione tecnica

0

Sintesi dell'introduzione tecnica

	Sintesi dell'introduzione tecnica	
Α	A-Regole di progettazione degli elementi riscaldanti	14~25
A1	Riscaldatori tubolari con guaina o riscaldatori in steatite all'interno di una guaina tubolare	14
A2	Principali metalli utilizzati nei riscaldatori tubolari con guaina	15
A3	Limiti del raggio di curvatura dei riscaldatori tubolari con guaina	16
A4	Diametro minimo di curvatura possibile (mm), per una curvatura a 180°, da asse a asse del tubo, senza necessità di ripressatura	17
	(valori medi)	
A5	Parametri di selezione della densità di Watt	17
A6	Velocità di flusso del liquido	17
A7	Condizioni di lavoro normali, con flusso circolante	18
A8	Temperatura superficiale in condizioni di lavoro anomale, senza flusso di liquido Zona non riscaldata, detta anche zona fredda	18 19
A9 A10	, , , , , , , , , , , , , , , , , , ,	19
	Resistenza di isolamento e corrente di dispersione	
A11	Porosità dei riscaldatori tubolari	19
A12	Soluzioni di tenuta finale contro la porosità del vapore acqueo nei riscaldatori tubolari Test di resistenza all'isolamento in funzione della temperatura sulle sole guarnizioni terminali dei riscaldatori tubolari.	20
A13	(Realizzato su tubi da 10 mm di Diametro Esterno con asta di collegamento dia. 4 mm) Misurazione della resistenza di isolamento, corrente di dispersione	21 21
A14 A15	Nota sulle misure di resistenza di isolamento	21
A16 A17	Spessore dell'ossido di magnesio rispetto al valore dell'isolamento e al recupero del vapore acqueo	22
	Effetto della temperatura sulla resistenza all'isolamento dell'ossido di magnesio compattato	22
A18	Distanze di isolamento dei riscaldatori tubolari con guaina	23 25
A19	Gradi di inquinamento	
B	B-Regole di progettazione dei corpi dei serbatoi	26~30
B1	Motivi per l'utilizzo di acciaio inossidabile da 1.2 mm Interstizi di saldatura	26
B2		26
B3	Colpo d'ariete	27
B4	Resistenza alla pressione in base al design della flangia	28
B5	Test delle perdite	29
B6	Dimensionamento delle tubazioni di ingresso e di uscita in base alla perdita di carico e al flusso	29
B7	Posizioni di installazione di serbatoi e riscaldatori e zone morte	30
B8	Esempi di progetti o installazioni sbagliate	30
B9 C	Esempi di progetti e impianti efficienti C-Consumi d'acqua in entrata e in uscita	30 31~34
C1	Uso della filettatura dei raccordi per l'ingresso e l'uscita principale e per i circuiti ausiliari	31 34
C2		
C2	Esempi di collegamento idraulico Dimensioni usuali delle filettature	31 32
C3	Soluzioni di connessione filettata	
C5		32 33
	Posizioni principali di ingresso e uscita del circuito idrico	
D D1	D-Montaggio del riscaldatore tubolare su serbatoi	35~38
D1	Soluzioni per il montaggio dei riscaldatori sui serbatoi	35
D2	Giunzione degli elementi riscaldanti sul serbatoio del riscaldatore di circolazione	36
D3	Manutenzione dei tubi degli elementi riscaldanti Distanza tra gli elementi riscaldanti e le pareti metalliche del serbatoio o del tubo	37 38
D4	·	38 39~45
E = 1	E-Installazione di pozzetti termici (Tasche) e TCO Design delle tasche	
E1 E2	Confronto tra le materie prime che possono essere utilizzate nei pozzetti termici dei riscaldatori	39 39
E2 E3	Le 3 soluzioni per chiudere le estremità dei tubi e la relativa resistenza alla pressione	40
E4	Tempo di risposta termica rispetto al design del pozzetto termico, uso normale	41
E5	Soluzioni di montaggio del taglio termico	41
E6	Condizione di funzionamento a secco, tempo di risposta del taglio termico rispetto alla distanza del pozzetto termico con riscaldatore tubolare, per 5W cm² e 10W/cm²	42
E7	Risultati dei test a secco effettuati su riscaldatori con e senza fusibile termico.	44
F	F-Termostati a montaggio superficiale	46~50
F1	Soluzioni di montaggio dei termostati a superficie	46
F2	Soluzioni di tenuta per termostati a disco	47
F3	Tempo di risposta termica in caso di aumento della temperatura del liquido, in base alle soluzioni di montaggio del termostato in superficie	48
F4	Tempo di risposta termica in condizioni di funzionamento a secco con la soluzione di montaggio del termostato in superficie	49
G	G-Soluzioni di montaggio a parete del termostato	51~52
G1	Montaggio con borchie o bulloni	51
G2	Soluzione di posizionamento preciso per le staffe degli accessori	51
G3	Montaggio delle gambe	52

Н	H-Regole di cablaggio.	53~62
H1	Protezione dei terminali dopo la sigillatura finale	53
H2	Aumento della temperatura dei terminali rispetto alla protezione e alla potenza	54
H3	Configurazioni dell'elemento riscaldante in funzione della tensione di esercizio	54
H4	Schemi di cablaggio principali	55
	Possibilità di montaggio degli elementi riscaldanti in funzione delle dimensioni del serbatoio e della tensione di	
H5	alimentazione	56
H6	Confronto generale di fili e cavi	56
H7	Resistenza alla trazione del materiale isolante (considerato come un indicatore della sensibilità al taglio accidentale dello strato isolante)	56
H8	Resistenza alla trazione del filo rispetto al materiale di rivestimento e al materiale di isolamento del filo	57
H9	Confronto dello spessore dell'isolamento (valori medi in mm)	57
H10	Confronto tra i fili e i cavi utilizzati nel cablaggio interno dei prodotti	58
H11	Confronto di prezzo rispetto a H07-VK (fili da 1.5 mm ² *)	59
H12	Isolamento di cavi e fili e ritardanti di fiamma e zero alogeni	60
H13	Aumento della temperatura di un filo elettrico in funzione dell'intensità elettrica e della temperatura ambiente	61
H14	Regole di messa a terra richieste dalle norme	61
H15	Terminali di messa a terra dei riscaldatori	62
H16	Coperchio per la protezione meccanica del cablaggio	62
ı	I-Dispositivi di controllo e sicurezza	63~65
I1	Controller elettronici di temperatura, termostati, limitatori di temperatura, dispositivi di protezione termica	63
12	Sensori di temperatura	64
13	Interruttori di flusso	65
J	J-Isolamento termico	66~68
J1	Isolamento termico Schiuma	66
J2	Confronto delle principali specifiche tecniche delle due schiume	66
J3	Protezione superficiale delle schiume termoisolanti	67
J4	Rapporti di test sulle caratteristiche critiche delle schiume isolanti nelle applicazioni di riscaldamento	67
K	K-Protezione contro il calcare	69~70
K1	Regole di progettazione anti-calcare	69
K2	Deposito di calcare rispetto alla temperatura	70
L	L-Protezione dalla corrosione	71~79
L1	Regole di progettazione contro la corrosione dei metalli	71
L2	Corrosione intergranulare.	72
L3	Contaminazione da ossidi di ferro durante il processo	73
L4	Corrosione da cloro e cloruri	73
L5	Gradi di acciaio inossidabile raccomandati rispetto alla percentuale di cloro libero e cloruri	73
L6	Regole di progettazione contro la corrosione galvanica, chiamata anche corrosione bimetallica	74
L7	Alcuni casi particolari di coppie elettrochimiche bimetalliche, escluso l'acciaio inossidabile	75
L8	Coppie elettrochimiche di vari metalli	76
L9	Corrosione sotto isolamento.	76
L10	Fattori aggravanti la corrosione Sintesi delle regole attuate durante le operazioni di produzione dei riscaldatori per prevenire l'insorgere della	77
L11	Sintesi delle regole attuate durante le operazioni di produzione dei riscaldatori per prevenire i insorgere della corrosione.	78
L12	Protezione mediante anodi sacrificali di magnesio	79
L13	Protezione mediante elettrodo a corrente imposta	79
М	M-Formula e grafici tecnici	80~84
M1	Legge di Ohm	80
M2	Tabella della potenza in watt di un riscaldatore elettrico in funzione della resistenza e della tensione tra i terminali.	80
M3	Cablaggio di un elemento riscaldante monofase	81
M4	Connessioni dell'elemento riscaldante a fase	81
M5	Calcolo della potenza necessaria per riscaldare i liquidi	82
M6	Aumento della temperatura dell'acqua in °C per ora/volume/potenza. (Calcolo teorico, perdite termiche non dedotte)	82
M7	Confronto dell'aumento di temperatura in °C/ora in alcuni liquidi e solidi	83
M8	Calore specifico (cp, in kJ/kg °C) e peso specifico (ρ, in Kg/m³) dei principali liquidi	83
M9	Calore specifico (cp, in kJ/kg °C) e peso specifico (ρ, in Kg/m³) dei principali solidi	84
M10	Flusso d'acqua per i normali riscaldatori di liquidi.	84

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

A-Regole di progettazione degli elementi riscaldanti

A-1 Confronto tra riscaldatori tubolari con guaina e riscaldatori ceramici all'interno di tubi di rivestimento

Negli scaldacqua, in particolare in quelli ad accumulo, esistono due soluzioni principali per riscaldare l'acqua: i riscaldatori tubolari con guaina e gli elementi riscaldanti in ceramica all'interno dei tubi di rivestimento.

Il tubo di rivestimento è solitamente un tubo metallico rivestito di smalto, ma a volte è in acciaio inossidabile.

Negli scaldacqua ad accumulo, la densità media di watt superficiale dei tubi di rivestimento con riscaldatori ceramici è di 5W/cm² per soddisfare lo standard "Classe C, prestazioni NFC", che richiede meno di 6W/cm². Pertanto, questo valore di 5W/cm² verrà utilizzato come valore comparativo. I resistori in steatite sono disponibili in diversi diametri, come 32, 36, 47 o 52 mm, ma il diametro più utilizzato è quello di 52 mm.

Per la loro incorporazione nei riscaldatori di liquidi, il requisito principale è la dimensione.

Dimensioni abituali dei riscaldatori ceramici utilizzati all'interno di tubi di rivestimento

Potenza (W)	Diametro del cilindro ceramico (mm)	Lunghezza (mm)
2000	52	320
2500	52	350
3000	52	450
3600	52	500

Vantaggi e svantaggi delle due soluzioni

Disegno	Tipo	Vantaggio	Svantaggi
	Tubo con diametro Riscaldatore a barilotto in ceramica da 52 mm	- Basso costo quando il tubo e la flangia sono realizzati in acciaio smaltato come il corpo del serbatoio. (Scaldacqua ad accumulo) - Nessun assorbimento di umidità Sostituibile senza necessità di svuotare il serbatoio.	 Rischio di corrosione che richiede una protezione anodica (versioni smaltate). Limitata a una bassa densità di watt (<5W/cm²). Ingombro notevole che ne impedisce l'installazione in serbatoi di piccolo diametro o di lunghezza ridotta. Versioni trifase di dimensioni molto grandi. Tempi di risposta lunghi a causa dello scarso trasferimento di calore tra il riscaldatore e la parete del tubo. Costo elevato e tempi di risposta molto lunghi con guaina in acciaio inossidabile.
	Riscaldatori tubolari con guaina	 Ingombro ridotto Numerose varianti di piegatura che consentono di adattarsi a tutti i volumi di riscaldatori. Tempo di risposta rapido, adatto al controllo della temperatura dei liquidi in circolazione. Basso costo se saldati direttamente alle pareti. Realizzati in acciaio inossidabile o in leghe resistenti alla corrosione. Sono possibili alte densità di watt, a seconda dell'applicazione, fino a 20W/cm². Questa è la soluzione scelta per i riscaldatori di questo catalogo. 	- Recupero dell'umidità (in caso di produzione di scarsa qualità)

Introduzione tecnica

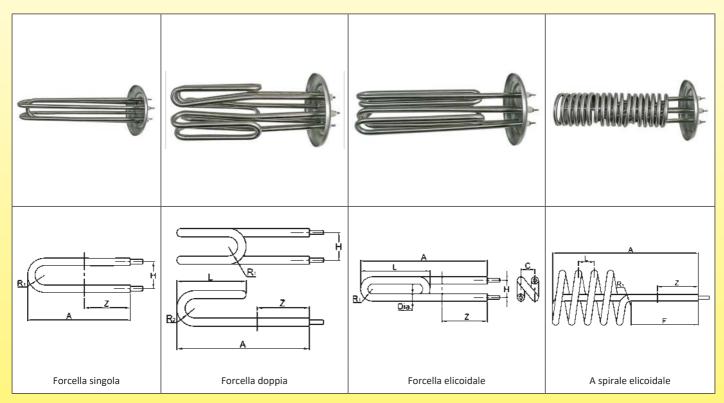
A-2 Principali acciai inossidabili utilizzati nei riscaldatori di liquidi.

Esistono diversi materiali di guaina per i riscaldatori tubolari utilizzati per il riscaldamento dei liquidi. Si possono utilizzare molti tipi di acciaio inossidabile.

Oltre all'aspetto economico, la scelta deve tenere conto delle condizioni di utilizzo, del liquido riscaldato e della durata di vita richiesta. Tuttavia, i fattori più importanti sono la natura del liquido che deve essere a diretto contatto con l'elemento riscaldante e la temperatura.

TH	AISI	DIN	Utilizzo
EN 1.4301	AISI 304	W. 1.4301	In acqua o in ambiente umido max 450°C. I serbatoi dei riscaldatori in linea sono comunemente realizzati in 304. È il meno costoso dei materiali menzionati in questo elenco.
EN 1.4307	AISI 304L	W. 1.4307	Uguale al 304 per ambienti umidi e corrosivi. Utilizzato per elementi riscaldanti di lavatrici e serbatoi di riscaldamento. Migliore resistenza alla corrosione dopo la saldatura TIG rispetto al 304.
EN 1.4541	AISI 321	W. 1.4541	In acqua o in ambiente umido max.550°C. Elementi riscaldanti per lavaggio e cottura. Questa lega è simile al 304L, ma con l'aggiunta di titanio per diminuire la precipitazione dei carburi. Per essere un vero grado "stabilizzato", l'acciaio 321 deve avere un contenuto di titanio (Ti) pari ad almeno 5 volte quello del carbonio (C). Non viene utilizzato nei serbatoi di riscaldamento.
EN 1.4404	AISI 316L	W. 1.4404	Migliore resistenza alla corrosione. Per acqua o ambienti umidi corrosivi max 450°C. Utilizzato negli elementi di riscaldamento a circolazione per circuiti di riscaldamento centrale. Utilizzato nelle pareti dei serbatoi di riscaldamento quando è richiesta una resistenza alla corrosione superiore, di solito quando si utilizzano i cloruri per la disinfezione dell'acqua.
EN 1.4435	AISI 316SL	W. 1.4435	Equivalente al 316L, con la differenza che il maggior contenuto di molibdeno garantisce elevate caratteristiche meccaniche e resistenza alla corrosione. In acqua o in ambienti umidi e corrosivi max 500°C.Uso molto limitato.
EN 1.4571	AISI 316Ti	W. 1.4571	Equivalente all'AISI 321, con l'aggiunta di molibdeno oltre al titanio. Per temperature di 500°C, anche in servizio discontinuo. Utilizzo molto limitato.
EN 1.4876	Lega 800	W. 1.4876	Indicata anche come Incoloy 800. In acqua e aria con temperatura massima fino a 1050°C. Resistenza alla corrosione simile a quella dell'AlS1316L nei circuiti di riscaldamento centrale. Non utilizzato per i serbatoi dei riscaldatori a circolazione.
EN 2.4858	Lega 825	W. 2.4858	Indicata anche come Incoloy 825. In acqua o in ambienti altamente corrosivi. Stesse applicazioni della lega 800, ma resistenza alla corrosione superiore a temperature elevate.
EN 1.4847	Lega 840	W. 1.4847	Denominata anche Incoloy 840. In aria per temperature massime fino a 950°C. Non utilizzato per il riscaldamento di liquidi.
Ti II	UNS R50400	W. 3.7035	Questo materiale è ampiamente utilizzato nel riscaldamento a immersione, nelle tubazioni dell'acqua di mare e nei recipienti dei reattori. Resiste a materiali altamente corrosivi. È il più costoso tra i materiali di guaina citati in questo elenco.

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.


A-3 Limiti del raggio di curvatura dei riscaldatori tubolari con guaina

La ricerca della compattezza e quindi della riduzione dei costi delle materie prime utilizzate nella costruzione dei serbatoi si scontra con un requisito tecnico critico: il raggio di curvatura minimo degli elementi riscaldanti. È questo parametro, oltre alla lunghezza del tubo di riscaldamento richiesta in base alla potenza e alla densità di carico selezionata, a determinare le dimensioni del serbatoio.

In tutte le applicazioni in cui la tensione di alimentazione può essere superiore a 230V, i riscaldatori tubolari con un diametro inferiore a 8 mm non sono utilizzabili perché le distanze di isolamento non sono sufficienti a soddisfare i requisiti delle norme di sicurezza

Per questo motivo stiamo sviluppando riscaldatori con elementi riscaldanti di diametro 8 o 10 e non 6.5 mm.

Gli elementi possono essere piegati in vari modi, in forcelle singole o doppie, in anelli appiattiti ed elicoidali. Ognuno di questi metodi di piegatura presenta vantaggi e svantaggi. Scendere al di sotto del raggio minimo di curvatura è possibile grazie ad accorgimenti tecnici, ma il risultato è spesso una riduzione della durata, un aumento del tasso di guasti sul campo o un'elevata percentuale di scarti di produzione, con conseguente aumento dei costi di produzione.

I limiti del raggio di curvatura sono dati da tre parametri:

1/ Il limite di allungamento della materia prima del tubo guaina:

Questo parametro dipende dal valore di allungamento della materia prima ricotta. Il tubo si rompe se questo valore viene superato. Per evitare tali rotture, se il diametro di curvatura è inferiore al limite minimo, la curvatura deve essere eseguita in 2 o più fasi, con una nuova ricottura tra ogni fase.

2/ I setacci di ossido di magnesio e il valore di compattazione:

Nel processo di piegatura, l'ossido di magnesio compattato può subire delle cricche. Maggiore è il diametro del tubo, maggiore è il rischio che ciò accada. Queste cricche possono portare al surriscaldamento e alla rottura della bobina, soprattutto a temperature elevate o ad alte densità di watt.

Per evitare tali guasti, se il diametro di curvatura è inferiore al limite minimo, le curve devono essere ripressate per eliminare le cricche nell'ossido di magnesio.

solo a titolo indicativo e possono essere modificate senza preavviso. le descrizioni e le caratteristiche utilizzate causa del continuo miglioramento dei nostri prodotti, i disegni,

A-4 Diametro minimo di curvatura possibile (mm), per curvatura a 180°, asse a asse del tubo, senza necessità di ripressatura (valori medi)

Diametro del tubo	304 / 304L	316 / 316L	321	Incolloy 800	Incolloy 825	Titanio (ASTM grado 1)
6.5	22	22	22	26	28	35
8	26	26	26	30	33	41
10	30	30	30	35	38	47
12	36	36	36	42	46	57
16	48	48	48	56	61	75

A-5 Parametri di selezione della densità di Watt

Le figure riportate in questa sezione sono i risultati di test effettuati nel nostro laboratorio. I grafici sono stati smussati al computer e sono forniti per potenze specifiche e a titolo puramente informativo.

Regole generali.

Si raccomanda di scegliere un carico superficiale che non produca un'ebollizione locale del liquido sulla superficie dell'elemento riscaldante. Questo fenomeno, chiamato cavitazione, provoca una rapida usura della guaina protettiva dell'elemento riscaldante, la decomposizione o trasformazione chimica del liquido e il deposito di calcare e contaminanti (carbonati, cloruri ecc.). Nel caso dell'acqua potabile, questi processi di deposito sono amplificati quando la temperatura dell'acqua raggiunge i 65°C e per una durezza dell'acqua superiore a 10dH.

Le raccomandazioni per la scelta delle densità in watt specifiche sono state fornite nel 1966 nella norma DIN 44875 (ultima versione: 1986-09) "Resistenze elettriche tubolari con guaina metallica; utilizzo".

Sono basilari e danno semplicemente come valori massimi per gli elementi in acciaio inossidabile 12 W/cm² in acqua ferma e 25 W/cm² in acqua corrente. Alcuni standard per gli scaldacqua ad accumulo raccomandano una densità di watt inferiore a 6 W/cm², in particolare la Classe C dello standard francese "NFC Performance".

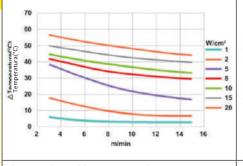
Questi livelli di densità di watt sono facilmente raggiungibili nei riscaldatori tubolari con guaina e la voce secondo cui i riscaldatori in steatite all'interno delle tasche sarebbero più efficienti e produrrebbero meno calcare è dovuta esclusivamente al confronto con i riscaldatori tubolari con guaina da 10 o 12W/cm².

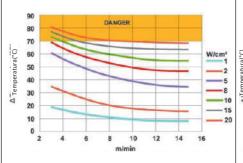
Per facilitare la comprensione delle configurazioni di applicazione abituali, abbiamo effettuato i seguenti test misurando in diversi punti la temperatura superficiale degli elementi riscaldanti mediante una termocoppia miniaturizzata saldata sulla superficie. In caso di dubbi sulla densità di watt appropriata per il riscaldatore in una particolare applicazione, consultare la fabbrica.

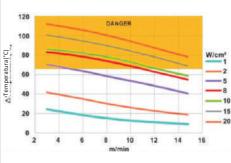
A-6 Velocità di flusso del liquido

Temperatura superficiale dei riscaldatori con guaina nei riscaldatori a circolazione in linea in funzione della velocità dell'acqua e della potenza superficiale

Nelle applicazioni con flusso permanente, il parametro importante è la velocità del liquido intorno all'elemento riscaldante. Nei grafici seguenti, la velocità è indicata in metri al minuto.


I dati di temperatura di queste curve sono la differenza tra la temperatura superficiale dell'elemento riscaldante e la temperatura del fluido, misurata a 50 mm sopra l'elemento riscaldante. I test sono stati eseguiti con acqua pura e acqua con aggiunta di glicole al 25% e al 50%, per carichi superficiali da 1 a 20 W/cm². Gli elementi riscaldanti sono completamente sommersi.


Nei circuiti di riscaldamento centrale la velocità minima raccomandata dell'acqua è di 18 m/min (0.3 m/s), ma si riferisce alla velocità dell'acqua nelle tubature. Nei riscaldatori, la velocità dell'acqua si riduce proporzionalmente al rapporto tra superficie della sezione.


Velocità dell'acqua (m/min) all'interno dei riscaldatori in base al flusso d'acqua

Diametro Esterno del riscaldatore (mm)	2 L/min	5 L/min	10 L/min	20 L/min	50 L/min	100 L/min	250 L/min	500 L/min
70	0,56	1,4	2,8	5,6	14	28	70	139
76	0,47	1,2	2,4	4,7	12	24	59	118
80	0,42	1,1	2,1	4,2	11	21	53	106
88	0,35	0,87	1,7	3,5	8,7	17	43	87
100	0,27	0,67	1,3	2,7	6,7	13	33	67
125	0,17	0,42	0,85	1,7	4,2	8,5	21	42
140	0,13	0,34	0,67	1,3	3,4	6,7	17	34

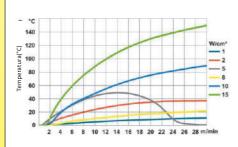
A-7 Condizioni di lavoro <u>normali</u>, riscaldatori tubolari completamente immersi, liquido in circolazione

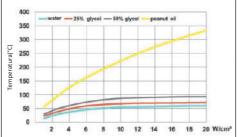
Elementi di riscaldamento completamente immersi, acqua pura

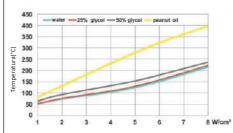
Flusso, immerso, 25% glicole

Flusso, immerso, 50% glicole

In acqua pura, in tutti i casi di questo test, la temperatura di ebollizione non viene raggiunta quando l'acqua è a meno di 40°C quando entra in contatto con gli elementi riscaldanti. Tuttavia, per una temperatura di ingresso di 40°C, la temperatura di 65°C viene raggiunta in tutti i casi con un carico di 8W/cm² e più.


Nell'acqua con il 25% di glicole, comunemente utilizzata nei circuiti di riscaldamento, la temperatura di ebollizione viene raggiunta a velocità inferiori a 6 m/min da 8W/cm² con una temperatura di ingresso dell'acqua di 40°C. Tutti i carichi superiori a 8W/cm² raggiungono il punto di ebollizione.


Nell'acqua con il 50% di glicole, utilizzata nei circuiti di riscaldamento che devono sopportare temperature molto basse, la temperatura di ebollizione viene raggiunta per velocità inferiori a 8 m/min e carichi di 5W/cm² con una temperatura di ingresso dell'acqua di 40°C. Tutti i carichi superiori a 5W/cm² raggiungono il punto di ebollizione.

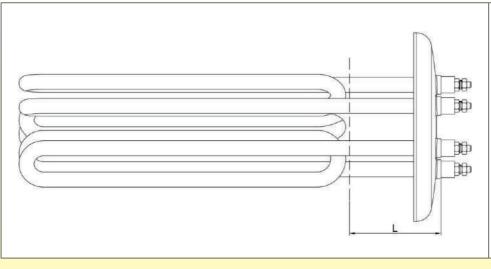

A-8 Condizioni di lavoro anormali, senza flusso di liquido

Evoluzione della temperatura superficiale dell'elemento riscaldante nel tempo, quando il flusso è interrotto, in funzione del carico superficiale dell'elemento riscaldante

I test sono stati eseguiti con acqua pura, acqua addizionata di glicole al 25% e al 50%, in quanto rappresentativi dei liquidi utilizzati nei circuiti di riscaldamento centrale e solare, e con olio di arachidi, rappresentativo dei liquidi utilizzati nelle applicazioni alimentari.

In condizioni di assenza di flusso, i valori della differenza di temperatura sono pari a 50 mm in alto e 50 mm in basso rispetto all'elemento riscaldante.

È possibile notare un'enorme differenza di temperatura, soprattutto nell'olio. **Nota:** Nel test dell'acqua con un carico di 10W/ cm², dopo 6 minuti, l'acqua intorno all'elemento riscaldante inizia a bollire e la differenza di temperatura diminuisce progressivamente, a causa della convezione fornita nell'acqua dall'ebollizione. In assenza di flusso, la differenza tra la temperatura superficiale dell'elemento riscaldante e la temperatura del liquido misurata a 50 mm sopra l'elemento riscaldante, a vari carichi superficiali. L'elemento riscaldante è completamente immerso. (Misure effettuate 10 minuti dopo l'accensione).


Nota: al di sopra di 8W/cm², non si verifica un aumento della differenza di temperatura nell'acqua e nell'acqua + glicole, poiché il liquido a contatto con l'elemento riscaldante inizia a bollire e l'energia viene utilizzata per la vaporizzazione. In assenza di flusso, questa è una simulazione di ciò che accade quando l'elemento riscaldante inizia a salire dal livello del liquido. (Riscaldatore tubolare semisommerso, misurazione effettuata dopo 10 minuti). La temperatura superficiale dell'elemento riscaldante aumenta bruscamente.

Nota: per l'olio, il punto di infiammabilità (320°C) viene raggiunto con un carico di 7W/ cm² e può verificarsi un'autoaccensione (pericolo di incendio).

descrizioni e le caratteristiche utilizzate

dei

causa del continuo miglioramento

La zona di non riscaldamento (L) è situata nel lato immerso dell'elemento riscaldante, subito dopo la parete. Evita che gli elementi riscaldanti riscaldino le estremità dei collegamenti elettrici e l'alloggiamento per conduzione termica. Un valore usuale di questa zona non riscaldata è di 50 mm (per la sezione immersa).

A-10 Resistenza di isolamento e corrente di dispersione

Dalle norme DIN44874-1, -2, -3, pubblicate per la prima volta nel 1966 sui riscaldatori tubolari con guaina, sono derivate le specifiche di base della maggior parte dei produttori europei, come le tolleranze +5/-10% sulla potenza, la corrente di dispersione inferiore a 0.5mA in 1250VCA e la resistenza di isolamento superiore a 2Mohm in 500V, con riscaldatore in posizione fredda. Questi valori, sebbene siano ancora attualmente utilizzati negli standard EN60335-1 Allegato 1, sono tuttavia inadeguati in molte applicazioni perché non tengono conto dei fenomeni di assorbimento dell'umidità nel tempo.

Nei riscaldatori in linea, la resistenza dell'isolamento deve raggiungere valori molto più elevati e la qualità costruttiva deve garantire un mantenimento più sicuro dell'isolamento nel tempo.

Prestiamo molta attenzione a garantire il massimo livello di prestazioni a questo isolamento elettrico.

I risultati finali sono la combinazione di molteplici fattori, dall'eccellente centratura delle bobine di filo riscaldante, alla giusta scelta tecnica della sigillatura finale dei tubi, passando per la qualità della magnesia utilizzata.

A-11 Porosità dei riscaldatori tubolari.

Questo punto critico è quello su cui i produttori di riscaldatori forniscono meno informazioni perché è quello che pone le maggiori difficoltà tecniche.

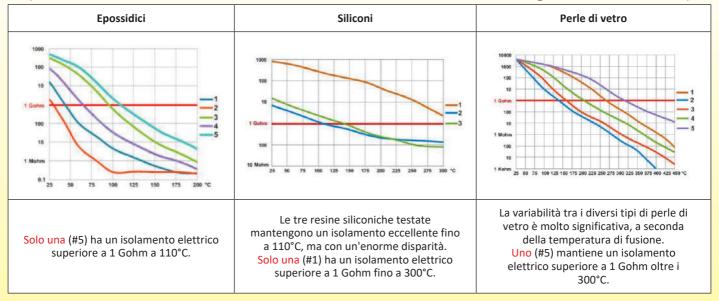
L'ossido di magnesio (MgO o magnesia), utilizzato per l'isolamento dei riscaldatori tubolari con guaina, è altamente idrofilo e assorbe rapidamente l'umidità atmosferica ambientale. L'assorbimento di umidità riduce notevolmente le sue proprietà isolanti e possono verificarsi correnti di dispersione che fanno scattare i GFCI.

A meno che non si utilizzi una magnesia resa meno idrofila rivestendo i grani con olio di silicone (detta magnesia idrofoba), che riduce notevolmente la temperatura a cui può funzionare, le soluzioni per prevenire l'assorbimento di umidità risiedono nella progettazione della chiusura delle estremità dei tubi, per ridurre o eliminare il passaggio del vapore acqueo atmosferico. I produttori di riscaldatori tubolari sono soliti affermare che si tratta di un fenomeno normale e che è sufficiente riscaldare i riscaldatori per eliminare l'umidità interna, ma si tratta solo di una soluzione temporanea, che può addirittura portare a un recupero dell'umidità ancora maggiore e più rapido se gli elementi corazzati fossero sigillati con resine a bassa temperatura. Alcuni produttori considerano addirittura un valore di isolamento della resistenza corazzata di 5 o 20 Megohm come standard, e raccomandano di riscaldarli tra 150°C e 260°C (da 300 a 500°F) durante la notte se il loro valore di isolamento scende al di sotto di 1 Megohm (50% al di sotto del valore minimo previsto dallo standard di sicurezza del 1966). Si tratta di una grande mancanza di sicurezza per gli utenti, anche se in queste condizioni (corrente di dispersione di 23mA 230V), il GFCI di casa si attiva sempre. Di seguito il confronto con i valori di isolamento e il tasso di assorbimento dell'umidità dei nostri riscaldatori.

> Cat23-2-2-19 Contattateci www.ultimheat.com

Introduzione tecnica

A-12 Soluzioni di tenuta finale contro la porosità del vapore acqueo nei riscaldatori tubolari

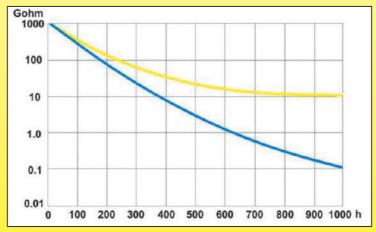

Tipo		Caratteristiche	Vantaggi	Svantaggi						
	Resine siliconiche	Le resine siliconiche sono ampiamente utilizzate per la sigillatura finale degli elementi riscaldanti, grazie alla loro eccellente resistenza alla temperatura.	- Eccellente resistenza alla temperatura (fino a 230°C), - Nessuna variazione delle caratteristiche di isolamento elettrico in funzione della temperatura. - Non si rompono - Buon legame con la parete del tubo del riscaldatore	- Le resine siliconiche sono porose, con un tasso di trasmissione del vapore acqueo (MVTR) fino a 100 gr*mm/m²/giorno a 23°C e 90% RH.						
	Resina epossidica	Le resine epossidiche, meno utilizzate, devono essere selezionate con grande attenzione, a causa delle loro caratteristiche molto diverse a seconda delle qualità e dei fornitori. La temperatura che possono sopportare, il punto di transizione vetrosa, la flessibilità e le condizioni di polimerizzazione sono parametri critici. La Temperatura di Transizione Vetrosa (Tg), una delle proprietà più importanti dell'epossidico, è la regione di temperatura in cui il polimero passa da un materiale duro e vetroso a un materiale morbido e gommoso e cambia fase. In questo intervallo di temperatura, la resistività di volume diminuisce, la resistenza e l'ermeticità si riducono notevolmente.	 Basso tasso di permeabilità al vapore acqueo (MVTR), da 6 a 10 g*mm/(m²*24h) al 90% di umidità relativa. Buon legame con l'acciaio inossidabile 	- Resistenza alle basse temperature, solitamente inferiore a 150°C, ad eccezione delle miscele speciali utilizzate nelle applicazioni aerospaziali e avioniche Enorme calo di resistività volumetrica al punto di transizione vetrosa (Tg).						
	Combinazione epossidica siliconica	È possibile combinare le due modalità di riempimento, eseguendo due strati successivi di riempimento, silicone ed epossidico o epossidico e silicone; ognuna delle due resine fornisce alcuni dei suoi vantaggi e supera gli svantaggi dell'altra.								
	Perle di vetro	Abbiamo sviluppato questo tipo di isolamento dell'estremità del tubo per soddisfare le esigenze dei riscaldatori ermetici. L'estremità del tubo è sigillata da una speciale perla di vetro fusa ad alta temperatura. Sono perfettamente adatti in aree con elevata umidità dell'aria o con uso sporadico.	 Applicazioni ad alte temperature (fino a 450°C) Porosità dell'umidità prossima allo zero. Gli elementi di test del nostro processo di produzione, misurati dopo 5 anni di stoccaggio in un clima subtropicale umido, presentano ancora una resistenza di isolamento superiore a 20Gohm. 	- Aumento dei costi di produzione - Fragilità meccanica del vetro.						

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

A-13 Test di resistenza all'isolamento in funzione della temperatura sulle sole guarnizioni terminali dei riscaldatori tubolari.

(Realizzato su tubi da 10 mm di Diametro Esterno con asta di collegamento dia. 4 mm)


A-14 Misurazione della resistenza di isolamento, corrente di dispersione

Le condizioni standard dei test di misurazione dell'assorbimento di umidità sono solitamente 1000 ore o sei settimane a 65°C e 90% di umidità relativa.

Questi test di invecchiamento termico sono stati resi più severi nel metodo sviluppato nel nostro laboratorio, in cui i prodotti collocati in una camera climatica sono sottoposti a cicli termici ripetitivi da 50 a 80°C della durata di un'ora, che espandendo e contraendo l'aria interna residua all'interno di riscaldatori tubolari, accelerano il tasso di porosità.

Questi test hanno contribuito a sviluppare soluzioni tecniche affidabili.

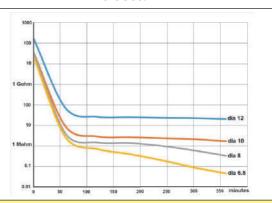
Il nostro processo standard di sigillatura finale raggiunge la stabilizzazione della porosità dell'umidità a 10 Gohm dopo 1000 ore in condizioni avverse, che è 5000 volte il valore richiesto dalla norma per i riscaldatori nuovi in condizioni atmosferiche standard. Di seguito sono riportati i risultati di test comparativi con riscaldatori tubolari tradizionalmente isolati che si ritiene abbiano raggiunto un valore molto buono di 100 megaohm (0.1Gohm) (curva blu) e riscaldatori tubolari standard del nostro processo attuale (curva gialla)

A-15 Nota sulle misure di resistenza di isolamento

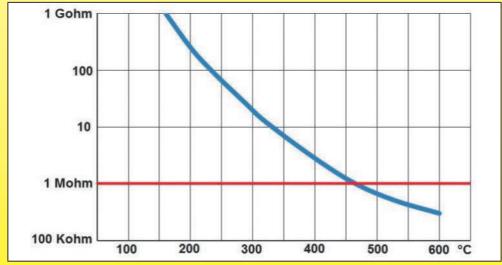
Quando la misurazione dell'isolamento viene eseguita su elementi riscaldanti trifase o monofase cablati in parallelo, collegando insieme i terminali sotto tensione, si applica la legge di Ohm e il risultato differisce dalla misurazione individuale di ciascun riscaldatore

Ad esempio: 3 riscaldatori in parallelo con un valore di isolamento di 10 Gohm ciascuno daranno un valore di isolamento totale di 3.33 Gohm in applicazione della formula 1/R = 1/R1 + 1/R2 + 1/R3

A-16 Spessore dell'ossido di magnesio rispetto al valore di isolamento e al recupero del vapore acqueo


I riscaldatori tubolari con guaina sono costituiti da un filo scaldante arrotolato di diametro variabile, isolato da polvere di magnesio e inserito in un tubo metallico che viene poi compattato mediante imbutitura per ridurne il diametro. Esistono molti diametri esterni dei tubi, i più comuni da 6.25 a 12 mm. Per ragioni di affidabilità e durata, i riscaldatori di questo catalogo utilizzano solo tubi di diametro 8 e 10 mm, riempiti con magnesite della migliore qualità. Lo spessore delle pareti dei tubi è variabile a seconda dei diametri, in quanto devono soddisfare le sollecitazioni di imbutitura, resistere alla flessione, assicurare la resistenza meccanica, cercando al contempo di ridurre il peso, e quindi il costo della materia prima utilizzata.

I tubi con pareti troppo sottili saranno soggetti a cricche o microcricche durante le operazioni di piegatura o successivamente, dopo un certo numero di cicli di riscaldamento. Per caratterizzare i vantaggi e gli svantaggi dei diversi diametri, abbiamo condotto dei test sull'isolamento e sull'assorbimento dell'umidità in funzione dei diversi diametri, su alcuni campioni. A seconda dei diametri, lo spessore dell'isolamento in magnesia varia da uno a tre. Lo spessore della magnesia determina direttamente la resistenza dell'isolamento.


Questi test sono stati eseguiti con magnesia pura, senza trattamento superficiale al silicone, che scompare durante la ricottura prima della piegatura.

Recupero dell'umidità (valore della resistenza di isolamento rispetto al tempo), riscaldatore tubolare non sigillato, lunghezza 100 mm, a 25°C e 90% R.H.

A-17 Effetto della temperatura sulla resistenza di isolamento dell'ossido di magnesio compattato

Valore di isolamento in funzione della temperatura di un riscaldatore tubolare con guaina di dia. 8 mm e lunghezza 1200 mm. (Misurato in un forno, su un riscaldatore tubolare con guaina precedentemente disidratato e senza guarnizioni terminali). Nota: A seconda della qualità di magnesia scelta e del suo rapporto di compressione, la resistività può variare da singola a quadrupla.

In base alla sua compattazione, la polvere di magnesia ha una conducibilità termica compresa tra 5 e 6 W.m-1. K-1. (Per la misurazione della compattazione, vedere "ASTM-D-2771-90 Standard Test Methods for Compaction Density of Electrical Grade Magnesium Oxide").

A-18 stare partic

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

A-18 Distanze di isolamento dei riscaldatori tubolari con guaina

È necessario prestare particolare attenzione ai terminali elettrici per rispettare le distanze di isolamento e di dispersione richieste dalle norme in base alla tensione e alla natura dell'ambiente.

Configurazioni (le distanze di dispersione sono uguali alle distanze di isolamento in questi modelli)

Stile di uscita	Diametro tubo 6.5, diametro asta 2.5	Diametro tubo 8, diametro asta. 3	Diametro tubo 8, diametro asta 4	Diametro tubo 8, diametro asta. 4	Diametro tubo 10, diametro asta 2.5
Il collegamento avviene tramite un terminale a linguetta saldato a punti sull'asta di uscita, ad almeno 4 mm dal tubo Distanza (mm)	0.8 2.5 1.3 4	0.8 2.15 4	0.8 1.9 4	Ø8mm	0.8 2.5 3.1 4
Distanza (mm)	1.3	2.15	1.9	1.4	3.1
Applicazioni possibili	Utilizzabile a 250V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I (IRC>600V)	Utilizzabile a 250V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I o II (IRC≥ 400V) Utilizzabile a 400V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I (IRC>600V)	Utilizzabile a 250V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I o II (IRC≥ 400V)	Utilizzabile a 250V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I (IRC>600V)	Utilizzabile a 250V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I, II o III (IRC≥ 175V) Utilizzabile a 400V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I o II (IRC≥ 400V)
Stile di uscita	Diametro tubo 10, diametro asta 3	Diametro tubo 10, diametro asta 4	Diametro tubo 12, diametro asta 2.5	Diametro tubo 12, diametro asta 3	Diametro tubo 12, diametro asta 4
Il collegamento avviene tramite un terminale a linguetta saldato a punti sull'asta di uscita e distante almeno 4 mm dal tubo.	Ø10mm	2.35 4 2.35 4 4 2.35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.8 2.5 4.1 4	0.8 3.85 4	0.8 3.35 4
Distanza (mm)	2.85	2.35	4.1	3.85	3.35
Applicazioni possibili	Utilizzabile a 250V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I, II o III (IRC≥ 175V) Utilizzabile a 400V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I o II (IRC≥ 400V)	Utilizzabile a 250V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I o II (IRC≥ 400V) Utilizzabile a 400V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I (IRC>600V)	Utilizzabile a 250V, grado di inquinamento 3, con isolamento in microsfere di vetro o resina di classe I, II o III (IRC≥ 175V) Utilizzabile a 400V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I, II o III (IRC≥ 175V)	Utilizzabile a 250V, grado di inquinamento 3, con isolamento in microsfere di vetro o resina di classe I o II (IRC≥ 400V) Utilizzabile a 400V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I o II (IRC≥ 400V)	Utilizzabile a 250V, grado di inquinamento 3, con isolamento in microsfere di vetro o resina di classe I o II (IRC≥ 600V) Utilizzabile a 400V, grado di inquinamento 2, con isolamento in microsfere di vetro o resina di classe I o II (IRC≥ 400V)

Introduzione tecnica

Stile di uscita	Diametro tubo 6,5, diametro asta 2.5	Diametro tubo 8, diametro asta. 3	Diametro tubo 8, diametro asta 4	Diametro tubo 10, diametro asta. 4	Diametro tubo 12, diametro asta. 4
Riempimento con resina epossidica o siliconica, con isolante ceramico, altezza esterna 4 mm, parte interna che penetra nella resina Il collegamento avviene tramite dado + dado di fissaggio (asta di uscita filettata), ma è possibile anche tramite una linguetta saldata a punti o un filo direttamente saldato sull'asta (asta senza filettatura).	resina epossidica o siliconica, con isolante ceramico, altezza esterna 4 mm, parte interna che penetra nella resina I collegamento avviene tramite dado + dado di fissaggio (asta di uscita filettata), ma è possibile anche tramite una linguetta saldata a punti o un filo direttamente saldato sull'asta (asta senza		Ø8mm	4 10 4 010mm	<u>4</u> <u>12</u> <u>4</u> Ø12mm
Distanza (mm)	4	4	4	4	4
Applicazioni possibili	Utilizzabile a 250V: Grado di inquinamento 3. Utilizzabile a 400V: Grado di inquinamento 2.	Utilizzabile a 250V: Grado di inquinamento 3. Utilizzabile a 400V: Grado di inquinamento 2.	Utilizzabile a 250V: Grado di inquinamento 3. Utilizzabile a 400V: Grado di inquinamento 2.	Utilizzabile a 250V: Grado di inquinamento 3. Utilizzabile a 400V: Grado di inquinamento 2.	Utilizzabile a 250V: Grado di inquinamento 3. Utilizzabile a 400V: Grado di inquinamento 2.
Stile di uscita	Diametro tubo 8, diametro asta 4	Diametro tubo 10, diametro asta. 4	Stile di uscita	Diametro tubo 8, diametro asta. 4	Diametro tubo 10, diametro asta. 4
Riempimento con resina epossidica o siliconica, con isolante ceramico, altezza esterna 5 mm, parte interna che penetra nella resina Il collegamento avviene tramite dado + dado di fissaggio (asta filettata in uscita), ma è possibile anche tramite una linguetta saldata a punti o un filo direttamente saldato sull'asta (asta senza filettatura)	Ø8 Ø	Ø10 5	Riempimento con resina epossidica o siliconica, con isolatore ceramico, altezza esterna 5 mm, parte interna che penetra nella resina Il collegamento avviene tramite dado + dado di fissaggio (asta di uscita filettata), ma è possibile anche tramite una linguetta saldata a punti o un filo direttamente saldato sull'asta (asta senza filettatura)	Ø8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Ø10 9
Distanza (mm)	5	5	Distanza (mm)	9	9
Applicazioni possibili	Utilizzabile a 250V: Grado di inquinamento 4. Utilizzabile a 400V: Grado di inquinamento 3.	Utilizzabile a 250V: Grado di inquinamento 4. Utilizzabile a 400V: Grado di inquinamento 3.	Applicazioni possibili	Utilizzabile a 250V: Grado di inquinamento 4. Utilizzabile a 400V: Grado di inquinamento 4.	Utilizzabile a 250V: Grado di inquinamento 4. Utilizzabile a 400V: Grado di inquinamento 4.

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Introduzione tecnica

A-19 Gradi di inquinamento

		Di	stanze minin	ne di dispersi	one per l'isol	amento di ba	se (tabella 20).3, EN60335	-1)		
	Grado di inquinamento del microambiente*										
Tensione nominale	1		2			3			4		
		Gruppo di materiali**		Gruppo di materiali**		Gruppo di materiali**					
		1	II	IIIA, IIIB	ı	II	IIIA, IIIB	I	II	IIIA	
≤250 V	0.6	1.3	1.8	2.5	3.2	3.6	4	5	6.3	8	
≤400 V	1	2	2.8	4	5	5.6	6.3	8	10	12.5	

^{**}I gradi di inquinamento 1, 2, 3 e 4 si applicano a componenti come riscaldatori tubolari o riscaldatori di liquidi. Il grado di inquinamento 4 non si applica ai dispositivi. Il microambiente è l'ambiente immediato dell'isolamento che influenza in modo particolare il dimensionamento delle distanze di dispersione.

- Grado di inquinamento 1: "Non c'è inquinamento o c'è solo un inquinamento secco e non conduttivo. L'inquinamento non ha alcuna influenza". Questo grado di inquinamento non è applicabile ai riscaldatori di questo catalogo.
- Grado di inquinamento 2: "Si verifica solo un inquinamento non conduttivo, ad eccezione di una conduttività temporanea causata dalla condensa". Questo livello di inquinamento è il più comune negli elettrodomestici per il riscaldamento.
- Grado di inquinamento 3: "Si verifica un inquinamento conduttivo o un inquinamento secco non conduttivo che diventa conduttivo a causa della condensa, come è prevedibile". Questo grado di inquinamento è comune a tutti gli apparecchi elettrici che possono produrre freddo.
- Grado di inquinamento 4: "L'inquinamento genera una conduttività persistente causata da polvere conduttiva o da pioggia o neve". Questo grado di inquinamento è possibile nei riscaldatori utilizzati nei sistemi di condizionamento reversibili, in cui si verifica la condensazione sui componenti situati in alto, che può portare alla creazione di gocce d'acqua.
- ** **Gruppo di materiali.** La relazione tra il gruppo di materiali e i valori dell'indice di tracciabilità dei test (PTI) è riportata in 6.13. I valori PTI si riferiscono a quelli ottenuti in conformità alla norma IEC 60112 e testati con la soluzione A.
- I: IRC 600. <u>Ceramica e vetro sono classificati in questa categoria senza test.</u> I materiali organici come le plastiche sono soggetti a test di certificazione per determinare la loro classificazione nel Gruppo I a IIIB.

II: 400≤IRC>600 IIIA: 175≤IRC>400 IIIB: 100≤IRC>175

solo a titolo indicativo e possono essere modificate senza preavviso. causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche

causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza

B-Regole di progettazione dei corpi dei serbatoi

B-1 Motivi per l'utilizzo di acciaio inossidabile da 1.2 mm

La scelta dell'acciaio inossidabile è stata ovvia, in quanto i riscaldatori devono essere utilizzati nei circuiti dell'acqua potabile, nei circuiti delle piscine e nei liquidi comunemente usati nei sistemi di riscaldamento centrale.

I riscaldatori di questo catalogo sono progettati per avere solo acciaio inossidabile a contatto con l'acqua, escludendo qualsiasi metallo d'apporto per saldature o spellature, resine e materiali plastici. Il risultato è che sono pienamente conformi alle norme WRAS e KTW.

- Le leghe di acciaio inossidabile, in particolare quelle austenitiche, presentano tassi di allungamento fino al 60%, facilitando la formatura.
- Hanno un'eccellente attitudine alla saldatura TIG.
- Hanno tutti una buona resistenza alla corrosione.
- I gradi AISI 316* sono particolarmente resistenti ai disinfettanti dell'acqua, comprese le zone saldate.
- Sono facilmente disponibili in lamiere, tubi, barre e sbozzi tubolari, consentendo la realizzazione nello stesso materiale di tutti i componenti del serbatoio, stampati o lavorati.
- La passivazione per immersione dopo l'assemblaggio completo è possibile senza contaminare il bagno con leghe per brasatura o saldature.
- Il valore di 1.2 mm è necessario per garantire una resistenza alla pressione compatibile con le reti idriche domestiche, pur mantenendo un sostanziale margine di sicurezza.

B-2 Effetto degli interstizi di saldatura sulla corrosione

Quando due componenti sono saldati l'uno accanto all'altro, la saldatura deve essere effettuata alla radice e penetrare l'intero spessore delle due pareti.

Una saldatura incompleta lascia un'intercapedine che dà inizio alla corrosione, soprattutto per la deposizione di particelle metalliche estranee.

Saldatura a tutto spessore, senza interstizio che favorisce la corrosione

Saldatura incompleta, che lascia uno spazio vuoto alla radice, favorendo la corrosione

B-3 Colpi d'ariete

Il colpo d'ariete è un'onda d'urto nell'impianto. Un riscaldatore di per sé non produce il colpo d'ariete, ma è causato da un arresto rapido della circolazione dell'acqua, di solito a causa di valvole a scatto, con conseguenti forti fluttuazioni di pressione generate da un'improvvisa decelerazione dell'acqua in movimento. Queste variazioni di pressione sono molto più significative quando la velocità dell'acqua è elevata e la chiusura è rapida. La durata dell'onda d'urto è dell'ordine di 0.2-0.5 secondi.

La pressione massima generata durante un'improvvisa interruzione del flusso è data dall'equazione di Joukowsky:

P=pcU

Con

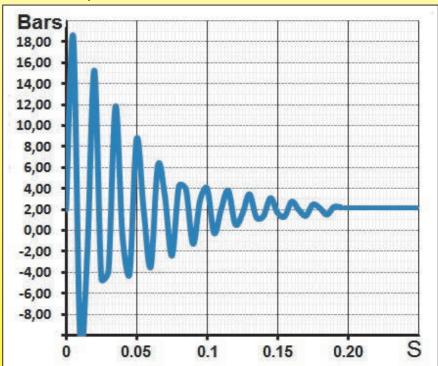
P=Pressione (Pa)

ρ= densità del liquido (kg/m³)

c=velocità del suono nel fluido (=1480m/s per l'acqua)

U=velocità del liquido (m/sec)

Ad esempio, in un riscaldatore con velocità di flusso dell'acqua di 1 m/s:


P=1000×1480×1=1.48 MPa

In pratica, queste onde d'urto sono ridotte dalla lunghezza del tubo tra il punto di produzione e il serbatoio. Ma i vincoli imposti al serbatoio sono importanti e possono portare, in casi estremi, a cricche da fatica, generalmente dovute a errori di progettazione che permettono la flessione delle pareti metalliche.

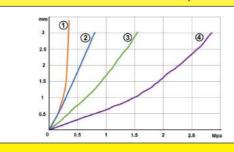
I prodotti di questo catalogo sono stati progettati per resistere a oltre 1.000.000 di colpi d'ariete con un Δ P di 20 bar e 0.2s.

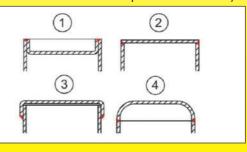
Principali cause dei colpi d'ariete

- Chiusura improvvisa di un rubinetto.
- Elettrovalvola della lavatrice.
- Avvio della pompa
- Arresto della pompa
- Chiusura della valvola di blocco
- Contatto di un liquido freddo con un vapore condensabile.

Forma tipica dell'onda d'urto durante un colpo d'ariete in un serbatoio di 125 mm di diametro, con una pressione dell'acqua di 2 bar e una velocità dell'acqua di 0.5 m/s nel circuito del tubo.

B-4 Resistenza alla pressione in base al design della flangia


La resistenza alla pressione dei serbatoi e le distorsioni che si manifestano si basano sulla forma data loro. Lo stesso vale per la loro resistenza ai test di invecchiamento accelerato, che simulano gli shock da colpo d'ariete nelle applicazioni, che si traducono molto rapidamente in cricche da fatica.


Se le estremità semplici e piatte sono facilmente realizzabili e possono sembrare economiche a prima vista, la loro resistenza alla pressione è limitata e richiede un notevole aumento dello spessore delle pareti per ottenere prestazioni simili. Il loro vantaggio economico quindi scompare. Per consentirvi di vedere le differenze che appaiono, abbiamo eseguito test comparativi su serbatoi dia. 100 mm, lunghezza 100 mm, acciaio AISI 304 di spessore 1.2 mm, saldatura TIG eseguita senza metallo d'apporto.

Questi test ci aiutano a spiegare perché preferiamo le flange a forma di piatto.

Design delle flange	Caratteristiche	Vantaggi	Svantaggi	Pressione per 1 mm di flessione al centro della flangia (Mpa)
	Estremità chiusa da una flangia piatta, saldata a TIG fianco a fianco.	- Nessun costo di attrezzaggio	 Distorsioni significative anche a bassa pressione. Resistenza alla pressione molto bassa La più bassa pressione di scoppio Cricche da fatica che compaiono presto in corrispondenza del cordone di saldatura. 	0.55Mpa
	Estremità chiusa da una flangia piatta con bordo esterno.	- Soluzione semplice da realizzare, i pezzi si incastrano l'uno nell'altro. - Il design facilita la brasatura. - Stampi di tranciatura semplici	 Gli interstizi significativi favoriscono la corrosione da parte di particelle estranee. Resistenza alle basse pressioni. Fratture da fatica che si verificano rapidamente alla flessione a 90° del bordo della flangia. 	1.15Mpa
	Estremità chiusa da una flangia piatta con bordo esterno.	 Una soluzione semplice da implementare, con parti che penetrano l'una nell'altra. Nella maggior parte dei casi, la flangia è saldata a TIG, perché è facile da realizzare. Semplicità di lavorazione 	 Gli interstizi significativi favoriscono la corrosione da parte di particelle estranee. Resistenza alla pressione più bassa. Cricche da fatica che si verificano rapidamente alla flessione a 90° del bordo della flangia. 	0.32 Mpa
	Flangia a forma di piatto. Saldatura TIG fianco a fianco	- La migliore resistenza alla pressione La più lunga durata ai test di invecchiamento Il maggior volume interno per il minor peso di materia prima Nessuna fessura che favorisca la corrosione da parte di particelle estranee Il design arrotondato evita zone morte e depositi di fango.	- Costo medio degli strumenti di stampaggio e formatura.	2.3 Mpa
	2 flange a forma di piatto imbutite, saldate a TIG una accanto all'altra.	 - La più breve lunghezza del cordone di saldatura - La migliore resistenza alla pressione - La più lunga durata ai test di invecchiamento. - Nessuna fessura che favorisca la corrosione da parte di particelle estranee. - Il design arrotondato evita zone morte e depositi di fango. 	 La lunghezza di ciascun semiguscio è limitata da 1 a 1.5 volte il diametro del serbatoio. Ad esempio, un serbatoio con diametro di 10 mm avrà una lunghezza limitata a 250 mm. Gli stampi più costosi. Perdite di materiale maggiori rispetto alla soluzione precedente. 	2.3 Mpa

Misurazione dell'allungamento totale del serbatoio come risultato della deformazione delle flange in funzione della pressione (test effettuati su serbatoi con diametro di 100 mm, lamiera di acciaio inossidabile 304L con spessore di 1.2 mm).

B-5 Test delle perdite

Le perdite d'acqua sono il rischio principale dei serbatoi dei riscaldatori.

Esse sono generalmente causate da micro-vuoti e fori invisibili nelle saldature. Questi difetti possono essere una discontinuità nella saldatura o una particella estranea.

Nel caso di gusci assemblati mediante brasatura a fiamma o per induzione, questo corpo estraneo è spesso una goccia di flusso di brasatura (di solito borace).

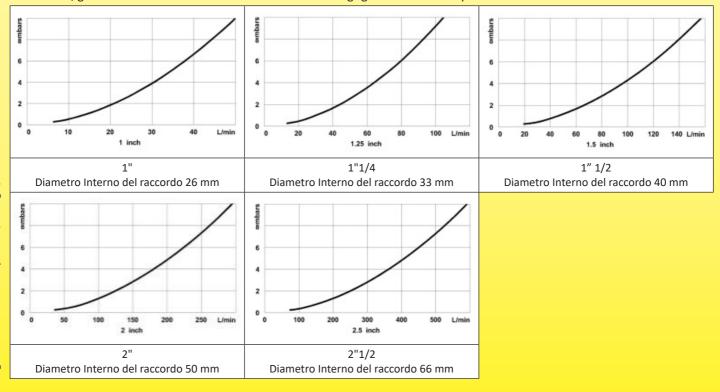
Questo tipo di corpo estraneo provoca perdite che non possono essere individuate nel processo di controllo qualità, in quanto il borace indurito sigilla la perdita finché non si scioglie in acqua. Questo processo può durare giorni. Le perdite si manifestano quindi molto tempo dopo i test di tenuta, e in genere sul campo dopo la consegna del prodotto finito.

Questo difetto non compare con i processi di brasatura sotto vuoto o in atmosfera controllata, ma in questi processi tutti i pezzi sono sottoposti a temperature fino a 650°C (brasatura capillare di leghe con argento/rame) e oltre 900°C (con leghe rame-nichel a saldare), che possono portare alla sensibilizzazione dell'acciaio inossidabile (si veda la sezione sulla corrosione), se queste operazioni non sono seguite da un adeguato trattamento termico.

Questo difetto non compare nelle saldature TIG eseguite senza metallo d'apporto, poiché la protezione durante la saldatura avviene tramite gas.

Questo spiega perché i serbatoi che produciamo non utilizzano brasatura o saldatura con metallo d'apporto o flussante. I test di tenuta vengono eseguiti 3 volte consecutivamente da 3 squadre diverse e con metodi diversi. L'individuazione di microperdite è particolarmente difficile e il fattore umano non consente di ottenere un risultato sicuro al 100% con un singolo test.

Statisticamente, il tasso di rilevamento è del 99.2% nel primo test, del 99.93% nel secondo test e di oltre il 99.999% nel terzo test.


B-6 Dimensionamento delle tubazioni di ingresso e di uscita in base alla caduta di pressione e al flusso

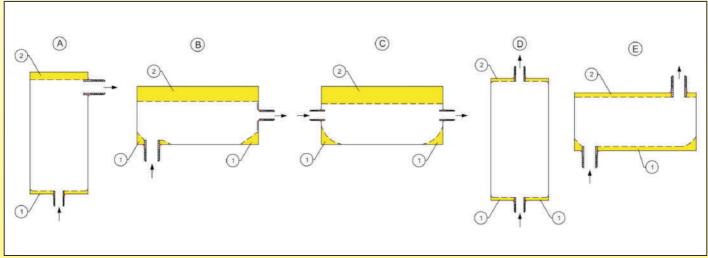
Test effettuati su riscaldatori in linea, acqua a 50°C, filettature maschio. Caduta di pressione in millibar e flusso in litri al minuto. La perdita di carico dei riscaldatori in linea è di solito quasi equivalente a 1 metro di tubo.

La perdita di carico deve essere aumentata del 25% quando l'ingresso e l'uscita sono angolati a 90 e del 60% quando l'ingresso e l'uscita sono perpendicolari al corpo del riscaldatore.

Se installati, gli accessori interni come i deflettori di flusso o le griglie aumentano la perdita.

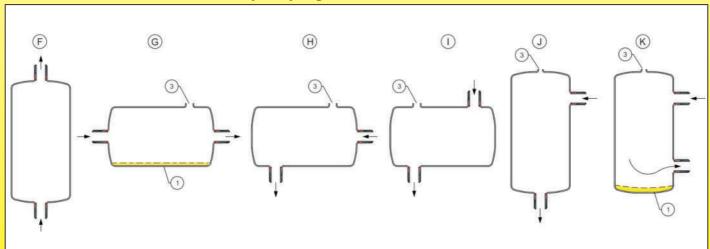
causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono

B-7 Posizioni di installazione di serbatoi e riscaldatori e zone morte


Esistono due tipi di zone morte:

- Quelle che raccolgono aria: L'aria può provenire dal degassamento del sistema idrico o da un drenaggio insufficiente. Una volta installati, i riscaldatori devono essere posizionati in modo da evitare l'accumulo di bolle d'aria all'interno del serbatoio. Le bolle d'aria sono isolanti termici e possono causare una misurazione errata della temperatura, l'attivazione del fusibile termico o un funzionamento errato del termostato e un surriscaldamento locale. Se i riscaldatori tubolari non sono adeguatamente immersi, possono causare rischi di incendio e/o danni alle apparecchiature.

Per evitare il ristagno d'aria nel circuito, è necessario effettuare un degassamento permanente. L'uso di uno sfiato automatico è necessario nella maggior parte dei casi.


- Quelli che accumulano ossidi e depositi di fango: I depositi di ossido sono tipicamente costituiti da ossido ferroso o ferrico, proveniente da altre parti del circuito di riscaldamento, nonché dal fango prodotto dalla decomposizione del glicole, e possono innescare punti di corrosione per vaiolatura.

B-8 Esempi di progetti o installazioni sbagliate

Le immagini A, B, C, D, E mostrano idee sbagliate e cattive posizioni di installazione dei riscaldatori, con aree di deposito di fango (1) o di accumulo d'aria (2) e anche angoli acuti interni che favoriscono l'accumulo di particelle.

B-9 Esempi di progetti e installazioni efficienti

I disegni F, H, I, J mostrano progetti con angoli arrotondati. Le sacche d'aria sono evitate dalla posizione (F) o dalla presenza di uno sfiato d'aria (3).

I depositi di fango si evitano se si rispetta la direzione del flusso. I disegni G e K mostrano un rischio di deposito di fango e possono richiedere un foro di drenaggio nella parte più bassa (1).

del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso

essere modificate senza preavviso. causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono

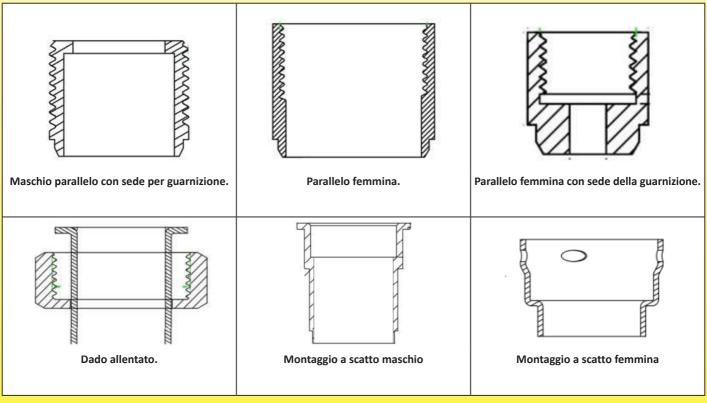
C-Connessioni di ingresso e uscita dell'acqua sui serbatoi

C-1 Uso della filettatura dei raccordi per l'ingresso e l'uscita principale e per i circuiti ausiliari

In Europa, le filettature parallele secondo la norma ISO228-1, dette anche BSPP, filettatura cilindrica per gas o "G", sono le più utilizzate.

Queste filettature sono ancora talvolta descritte, soprattutto in Francia, in base ai loro diametri interni ed esterni.

Questi giunti per tubi a filettatura parallela richiedono una sede e una guarnizione per garantire una corretta tenuta.


Le filettature coniche ISO-7, note anche come BSPT o "R", sono raramente utilizzate. La loro tenuta è garantita dalla filettatura. Sebbene non sia raccomandato, è possibile collegare una filettatura maschio conica a una filettatura femmina cilindrica, ma ciò richiede l'uso di un sigillante sulla filettatura.

Una fonte frequente di problemi nei giunti filettati è la tolleranza sulle filettature. Queste vengono solitamente controllate con calibri Go/No-Go e, a causa delle tolleranze di produzione, non esistono due calibri identici e gli standard aggiungono livelli di usura. È frequente che prodotti le cui dimensioni sono conformi agli standard vengano rifiutati con un calibro e accettati con un altro a causa di questi problemi.

Le norme ISO 228-2 e ISO 1502 affrontano le difficoltà di questo tipo di controllo con i calibri (si veda in particolare la norma §11 della ISO 1502 che spiega il principio di Taylor).

Nelle applicazioni per grandi quantità, gli attacchi rapidi sostituiscono i raccordi filettati di ingresso e di uscita.

C-2 Esempi di collegamento idraulico

C-3 Dimensioni usuali delle filettature

Dimensioni	Utilizz		iti ausiliari, p prese di pres	er sfiati d'ari sione, ecc.	a, fori di	delle pomp per il risca	nei riscaldato e di calore, n ldamento ele ori delle lava	elle caldaie ettrico, nei	Utilizzato nei riscaldatori di piscine e spa		
Dimensioni standard	1/8" (5-10)	1/4" (8-13)	3/8" (12-17)	1/2" (15-21)	3/4" (20-27)	1" (26-34)	1"1/4 (33-42)	1"1/2 (40-49)	2" (50-60)	2"1/2 (66-76)	
Diametro esterno	10.2 mm	13.2 mm	16.7 mm	21 mm	26.4 mm	33.3 mm	41.9 mm	47.8 mm	59.6 mm	75.2 mm	
DN	Dn6	Dn8	Dn10	Dn15	Dn20	Dn25	Dn32	Dn40	Dn50	Dn65	

C-4 Soluzioni di connessione filettata

Tipi	Caratteristiche	Vantaggi	Svantaggi
	Raccordo saldato in un foro praticato nella parete del tubo	Non sono necessari utensili, stampi o attrezzature speciali.	 Enormi difficoltà nel regolare correttamente la perpendicolarità. Difficoltà nel regolare correttamente la lunghezza esterna. Cause di zone morte nel serbatoio (in giallo sul disegno) Cucitura di saldatura 3D, difficile da realizzare, e l'automazione è difficile.
	Raccordo montato e saldato in un bordo estruso dalla parete del serbatoio.	 Ottimo posizionamento angolare. Eccellente posizionamento in lunghezza. Cucitura di saldatura e assemblaggio semplici e facili da automatizzare. Il raccordo è auto posizionato nella sua nicchia. Permette di saldare raccordi di spessore elevato. Nessuna zona morta nel serbatoio 	 Strumenti necessari per il taglio del foro che deve essere oblungo. Strumenti di formatura costosi per il cerchio estruso.
	Raccordi o tubi saldati fianco a fianco su un bordo estruso dalla parete del serbatoio.	 Ottimo posizionamento angolare. Eccellente posizionamento in lunghezza. Cucitura di saldatura e assemblaggio semplici e facili da automatizzare. Nessuna zona morta nel serbatoio. 	 Necessità di utensili per garantire la concentricità. Utensili necessari per tagliare il foro che deve essere oblungo. Strumenti di formatura costosi per il cerchio estruso. Poco adatto a raccordi con pareti spesse.
	Filettatura formata direttamente sulla parete del serbatoio mediante flow-drill.	 Nessuna foratura. Nessuna saldatura. Nessuna perdita di materiale. Ottimo posizionamento angolare. Buona superficie di appoggio della guarnizione. La soluzione più economica. 	 Causa una zona morta nel serbatoio. Fattibile solo nei piccoli diametri 1/8" e 1/4". La maschiatura dopo la foratura è piuttosto difficile.

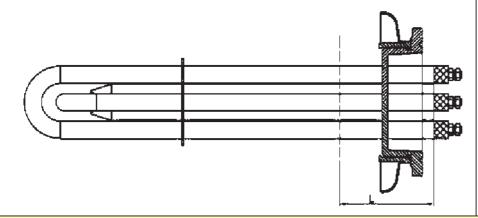
Cat23-2-2-33

C-5 Posizioni principali di ingresso e uscita del circuito idrico

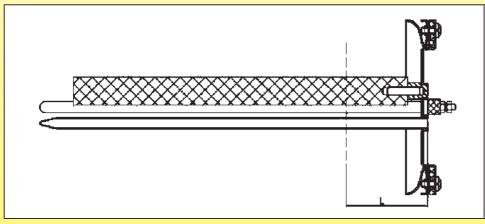
Configurazione	Caratteristiche	Diametri dei serbatoi	Dimensioni dei raccordi	Vantaggi	Svantaggi
	In linea, montaggio verticale	Dia. 70, 76, 80, 88 mm	1" per dia. 70, 76, 80; 1" e 1" 1/4 per dia. 88	- Può essere installato in un circuito esistente, semplicemente rimuovendo una sezione di tubo verticale Non è necessario uno sfiato automatico sul serbatoio (ma è comunque necessario utilizzare uno sfiato automatico nell'installazione).	- Le uscite dei riscaldatori tubolari sono vicine al raccordo del circuito principale, che impone particolari vincoli elettrici e richiede un montaggio lungo e costoso. - La quantità di riscaldatori tubolari è limitata a 1, 2 o 3 a seconda del modello. - Massimo due tasche.
+	In linea, montaggio orizzontale	Dia. 70, 76, 80, 88 mm	1" per dia. 70, 76, 80; 1" e 1" 1/4 per dia. 88	- Può essere installato in un circuito esistente, semplicemente rimuovendo una sezione di tubo verticale.	- Lo sfiato automatico dell'aria è obbligatorio sul serbatoio Le uscite dei riscaldatori tubolari sono vicine al raccordo del circuito principale, il che impone particolari vincoli elettrici e richiede un raccordo lungo e costoso La quantità di riscaldatori tubolari è limitata a 1, 2 o 3 a seconda del modello Massimo due tasche.
	Con montaggio orizzontale a 90°.	Dia. 88, 100, 125 e 140 mm.	1" e 1" 1/4 per dia. 88. Da 1" a 2" 1/2 per dia. 100, 125 e 140 mm.	 Uscita del riscaldatore tubolare su un lato senza raccordo idraulico. Fino a 4 tasche. Fino a 6 riscaldatori tubolari in dia. 125 e 140 mm. 	- Obbligatorio lo sfiato automatico dell'aria sul serbatoio. - Difficile da realizzare su serbatoi di piccolo diametro
	A 90°, montaggio verticale, uscita laterale.	Dia. 88, 100, 125 e 140 mm.	1" e 1" 1/4 per dia. 88. Da 1" a 2" 1/2 per dia. 100, 125 e 140 mm.	- Fino a 4 tasche. - Fino a 6 riscaldatori tubolari in dia. 125 e 140 mm.	Le uscite dei riscaldatori tubolari sono vicine allo sfiato automatico obbligatorio, che rappresenta un rischio per la sicurezza elettrica. Difficile da realizzare su serbatoi di piccolo diametro.
	A 90°, montaggio verticale, uscita superiore.	Dia. 88, 100, 125 e 140 mm.	1" e 1" 1/4 per il diametro 88. Da 1" a 2" 1/2 per dia. 100, 125 e 140 mm.	 Non è necessario uno sfiato automatico sul serbatoio (ma è necessario utilizzare uno sfiato automatico nell'installazione). Uscita del riscaldatore tubolare su un lato senza raccordo idraulico. Fino a 4 tasche. Fino a 6 riscaldatori tubolari con diametri di 125 e 140 mm. 	- Difficile da realizzare su serbatoi di piccolo diametro.
-	Raccordi a 180°, montaggio verticale	Dia. 88, 100, 125 e 140 mm.	1" e 1" 1/4 per dia. 88. Da 1" a 2" 1/2 per dia. 100, 125 e 140 mm.	 Uscita del riscaldatore tubolare su un lato senza raccordo idraulico. Fino a 6 tasche. Fino a 6 riscaldatori tubolari in dia. 125 e 140 mm. 	- Obbligatorio lo sfiato automatico dell'aria sul serbatoio. - Difficile da realizzare su serbatoi di piccolo diametro.

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Configurazione	Caratteristiche	Diametri dei serbatoi	Dimensioni dei raccordi	Vantaggi	Svantaggi
ر _ب ات	Raccordi a 180°, montaggio orizzontale	Dia. 88, 100, 125 e 140 mm.	1" e 1" 1/4 per dia. 88. Da 1" a 2" 1/2 per i dia. 100, 125 e 140 mm.	 Uscita del riscaldatore tubolare su un lato senza raccordo idraulico. Fino a 6 tasche. Fino a 6 riscaldatori tubolari in dia. 125 e 140 mm. 	 Obbligatorio lo sfiato automatico dell'aria sul serbatoio. Difficile da realizzare su serbatoi di piccolo diametro.
	Raccordi paralleli sullo stesso lato, montaggio verticale.	Dia. 88, 100, 125 e 140 mm.	1" e 1" 1/4 per dia. 88. Da 1" a 2" 1/2 per i dia. 100, 125 e 140 mm.	 Uscita del riscaldatore tubolare su un lato senza raccordo idraulico. Fino a 6 tasche. Fino a 6 riscaldatori tubolari in dia. 125 e 140 mm. 	Obbligatorio lo sfiato automatico dell'aria sul serbatoio. Difficile da realizzare su serbatoi di piccolo diametro.
الم الم	Raccordi paralleli sullo stesso lato, montaggio orizzontale, raccordi sul lato inferiore	Dia. 88, 100, 125 e 140 mm.	1" e 1" 1/4 per dia. 88. Da 1" a 2" 1/2 per i dia. 100, 125 e 140 mm.	 Uscita del riscaldatore tubolare su un lato senza raccordo idraulico. Fino a 4 tasche. Fino a 6 riscaldatori tubolari in dia. 125 e 140 mm. Possibilità di incorporare uno scambiatore di calore tubolare nel diametro 140 mm. 	Obbligatorio lo sfiato automatico dell'aria sul serbatoio. Difficile da realizzare su serbatoi di piccolo diametro
را ^ا لـــاول	Raccordi paralleli sullo stesso lato, montaggio orizzontale, raccordi sul lato inferiore	Dia. 88, 100, 125 e 140 mm.	1" e 1" 1/4 per dia. 88. Da 1" a 2" 1/2 per i dia. 100, 125 e 140 mm.	 Non è necessario uno sfiato automatico sul serbatoio (ma è necessario utilizzare uno sfiato automatico nell'installazione). Uscita del riscaldatore tubolare su un lato senza raccordo idraulico. Fino a 4 tasche. Fino a 6 riscaldatori tubolari con diametri di 125 e 140 mm. Possibilità di incorporare uno scambiatore di calore tubolare nel diametro 140 mm. 	- Difficile da realizzare su serbatoi di piccolo diametro.

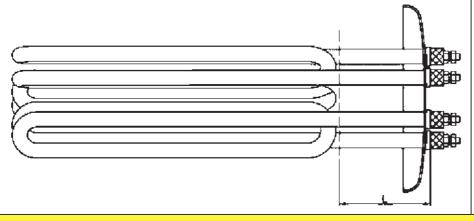

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

D-Montaggio del riscaldatore tubolare sui serbatoi


D-1 Metodi di montaggio dei riscaldatori tubolari sui serbatoi

I metodi di montaggio dei riscaldatori tubolari sui serbatoi sono uno degli elementi chiave della progettazione del dispositivo e sono direttamente correlati al tipo di applicazione e alla durata dell'unità.

I riscaldatori rimovibili e sostituibili sono consigliati quando il liquido è particolarmente corrosivo o mineralizzato, perché è nel punto più caldo che si verifica la corrosione ed è anche dove si accumulano i depositi di calcare.



Nelle applicazioni professionali, saranno privilegiati i raccordi a vite (da 1" a 2" 1/2 o M77x2), ma le dimensioni limitate del raccordo e il suo diametro di passaggio presentano rapidamente dei limiti quando i riscaldatori devono essere piegati o ripiegati.

Il montaggio su una flangia stampata è una soluzione economica per i riscaldatori rimovibili, in quanto consente diametri elevati e l'installazione di anodi sacrificali in magnesio.

Permette di rimuovere facilmente il riscaldatore dal serbatoio, per poterlo pulire, rimuovere fanghi e calcare e sostituire l'anodo.

Nelle acque poco mineralizzate che circolano in un circuito chiuso e nei liquidi poco corrosivi, la soluzione più economica è comunque la saldatura diretta dei riscaldatori tubolari sulla parete del serbatoio.

Se si utilizzano riscaldatori tubolari di buona qualità, con un buon isolamento elettrico, l'assemblaggio avrà una durata di diversi anni, simile alle altre due soluzioni, a un costo molto inferiore.

È la soluzione principale per i riscaldatori di questo catalogo.

D-2 Giunzione degli elementi riscaldanti sul serbatoio del riscaldatore di circolazione

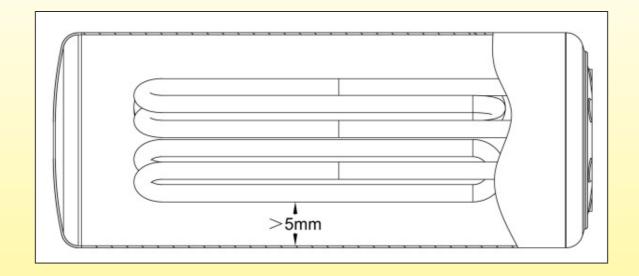
Questa connessione deve soddisfare diversi requisiti, tra cui:

- Fornire una buona tenuta
- Resistere alla temperatura del liquido
- Resistere alla temperatura superficiale dell'elemento riscaldante,
- Garantire la ritenzione meccanica
- Garantire la resistenza alla corrosione
- Resistere agli urti e alle vibrazioni durante la spedizione e l'uso sul campo.

Tipo	Sigillatura	Temperatura	Ritenzione meccanica	Resistenza alla corrosione
Saldatura a stagno	Buona se non ci sono sollecitazioni meccaniche o vibrazioni. La saldatura è difficile sull'acciaio inossidabile.	Max 120°C	Da scarsa a media	Scarsa
Incollaggio epossidico	Buono se non ci sono sollecitazioni meccaniche o vibrazioni.	Max 80°C	Scarso	Buona
Brasatura di leghe di rame	Buona, ma rischi di perdite eventualmente non rilevabili in produzione.	Max 300°C	Superiore	Media
Saldatura TIG	Superiore	Max 450°C (304L)	Superiore	Superiore

Per questi motivi il nostro processo di produzione utilizza la saldatura TIG.

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.


D-3 Manutenzione dei tubi degli elementi riscaldanti

A seconda della forma data agli elementi riscaldanti, questi saranno più o meno soggetti a vibrazioni durante il passaggio del liquido. Queste vibrazioni, se significative, sono fonte di rumori indesiderati e portano più o meno rapidamente alla rottura per fatica della saldatura del tubo riscaldante sul serbatoio. È quindi necessario utilizzare dispositivi di tenuta o griglie, che variano a seconda della configurazione del riscaldatore. Tali dispositivi consentono inoltre di mantenere saldamente gli elementi che possono essere fortemente sollecitati dalle condizioni di trasporto su strada in alcuni paesi.

Tipo	Caratteristiche	Vantaggi	Svantaggi
	Griglia a rondella	- Economica. - Utensili a basso costo.	- Grande perdita di pressione - Può muoversi e vibrare sui tubi Può essere utilizzata solo su riscaldatori a singola curvatura Non può essere installato o rimosso dopo la saldatura degli elementi riscaldanti sul serbatoio.
	Griglia a forcella	 Buon serraggio sui tubi Bassa perdita di pressione Può essere montata sui tubi dopo la saldatura dei riscaldatori tubolari sulla flangia. Rimovibile e riposizionabile Adatta a tutti i tipi di riscaldatori, compresi quelli a spirale. 	- Attrezzatura costosa - Può essere necessaria più di una griglia su un unico gruppo.
	Asta laterale	- Nessuna perdita di pressione Buona centratura della bobina all'interno del serbatoio Economico	- Disponibile solo per i riscaldatori tubolari a serpentina.

D-4 Distanza tra gli elementi riscaldanti e le pareti metalliche del serbatoio o del tubo

Nel nostro progetto, la distanza tra l'elemento riscaldante e la parete del tubo o del serbatoio è sempre superiore a 5 mm, per evitare la trasmissione del calore per conduzione o irraggiamento alla parete del serbatoio. Tutta la potenza degli elementi riscaldanti viene quindi utilizzata per riscaldare il liquido.

E-Pozzetti termici (Tasche) e installazione TCO

E-1 Design delle tasche

Nei riscaldatori, un pozzetto termico deve proteggere un sensore di temperatura, una lampada termostatica o un taglio termico dal liquido di cui misura la temperatura. Deve inoltre garantire la tenuta, la resistenza alla corrosione, la resistenza alla pressione e assicurare un buon trasferimento di calore tra il liquido e l'elemento di rilevamento della temperatura senza aumentare il tempo di risposta. Il suo posizionamento è essenziale per una misurazione affidabile corrispondente alla sua funzione nel riscaldatore.

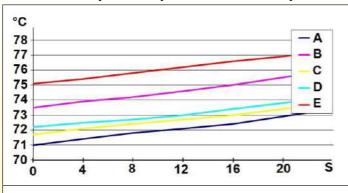
Funzione	Soluzione
Garantire la tenuta	Saldatura TIG sulla flangia e sull'estremità
Evitare la corrosione	Assenza di spazi vuoti, chiusura del tubo conico con lunghezza di saldatura ridotta
Resistenza alla pressione	Spessore della parete adattato, chiusura conica del tubo
Garantire un buon trasferimento di calore	Parete del tubo sottile, spazio ridotto tra il sensore e il tubo, grasso per il trasferimento del calore.
Ottimizzare il tempo di risposta	Massa ridotta e posizionamento ottimizzato
Misurare la temperatura corretta	Parete del tubo sottile, spazio ridotto tra il sensore e il tubo, grasso per il trasferimento del calore.

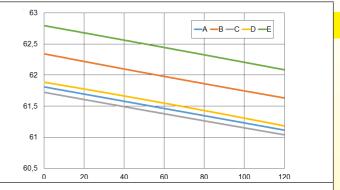
E-2 Confronto tra le materie prime che possono essere utilizzate nei pozzetti termici dei riscaldatori

Materiale	Conducibilità termica. (W·m-1·K-1)	Pressione massima interna del tubo secondo la norma (Bar)	Capacità termica specifica (J·°C-1·g-1)	Commenti
Rame puro	386	6x4.4=110 8x6=100 10x8=80 12x9.6=80 12x10=60	0.38	 A parità di spessore delle pareti, un pozzetto termico in rame trasmette il calore 26 volte più velocemente dello stesso in acciaio inossidabile. A parità di peso, le capacità termiche specifiche del rame e dell'acciaio inossidabile sono approssimativamente equivalenti. Richiedono la stessa quantità di energia per cambiare la temperatura. Per sopportare una pressione simile a quella del serbatoio, si raccomanda uno spessore di parete di 1 mm su tubi di 10 mm di diametro.
304 o 316 Acciai inossidabili	15	6x4.4=248 8x6=240 8x7=120 10x8=192 10x9=100	0.51	 A parità di spessore, un tubo di acciaio inossidabile è circa 2.5 volte più resistente di un tubo di rame. A parità di resistenza alla pressione, la parete del tubo di acciaio inossidabile può essere due volte più sottile di quella del tubo di rame, e quindi anche il tasso di trasferimento del calore e l'inerzia termica si dimezzano. A parità di peso, le capacità termiche specifiche del rame e dell'acciaio inossidabile sono approssimativamente equivalenti. Richiedono la stessa quantità di energia per cambiare la temperatura.

E-3 Le 3 soluzioni per chiudere le estremità dei tubi

Chiusura di estremità di tubi piatti


Chiusura conica con giunzione a vite


Tappo saldato

Soluzione	Saldatura	Resistenza alla corrosione	Resistenza alla pressione	Commenti
Estremità conica del tubo giuntato	La saldatura TIG è solo un punto all'estremità del cono.	La parte interna della saldatura può essere protetta dal gas di saldatura durante il funzionamento.	Massima resistenza alla sovrapressione. Pressione di schiacciamento misurata su una tasca di 12x11 mm: - In rame: 3.2 Mpa In acciaio inossidabile 304L: >10Mpa	Questa soluzione è la più soddisfacente in termini di resistenza alla pressione e i rischi di perdita sono notevolmente ridotti perché la saldatura è ridotta a un unico punto. Tuttavia, richiede un'attrezzatura specifica per la giunzione conica. È la soluzione preferita nei riscaldatori di questo catalogo.
Chiusura dell'estremità del tubo piatto	La saldatura TIG è una cucitura lunga che aumenta i rischi di perdita.	A causa del precedente appiattimento, la protezione della saldatura all'interno del tubo è impossibile, il gas di protezione non penetra tra i due strati.	La resistenza alla pressione è ridotta del 50% o più. Pressione di schiacciamento misurata su una tasca di 12x11 mm: - In rame: 1.6 Mpa In acciaio inossidabile 304L: 3.6 Mpa	Questa soluzione, benché insoddisfacente in termini di resistenza alla corrosione e di pressione, è più spesso utilizzata da altri produttori, perché non richiede attrezzature speciali per la giunzione.
Tappo saldato	La saldatura TIG è una lunga cucitura circolare che aumenta i rischi di perdita.	La parte interna della saldatura può essere protetta dal gas di saldatura durante il funzionamento.	Quando si utilizza un tappo dello spessore > 2 mm, la resistenza alla sovrapressione resistenza alla sovrapressione è simile a quella del modello giuntato. Pressione di schiacciamento misurata su una tasca di 12x11 mm: - In rame: 3.2 Mpa In acciaio inossidabile 304L: >10Mpa.	Questa soluzione, soddisfacente in termini di resistenza alla corrosione e di pressione, è spesso utilizzata da altri produttori, perché non richiede attrezzature speciali per la giunzione. Tuttavia, il suo costo è più elevato a causa della necessità di lavorare un tappo.

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

E-4 Tempo di risposta termica rispetto al design del pozzetto termico, uso normale

Tempo di risposta a un rapido aumento di temperatura di 6°C/min.

A=Tasca in rame, senza grasso termico

B=Tasca in rame, con grasso termico

utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche

C=Tasca in acciaio inossidabile, senza grasso termico

D=Tasca in acciaio inossidabile con grasso termico

E=Sensore di riferimento, immerso in acqua senza tasca

La deriva termica varia da $1.5\,^{\circ}\text{C}$ a $4\,^{\circ}\text{C}$ a seconda della scelta della tasca.

Tempo di risposta con una diminuzione lenta della temperatura di 0.25°C/min.

A=Tasca in rame, senza grasso termico

B=Tasca in rame, con grasso termico

C=Tasca in acciaio inossidabile, senza grasso termico

D=Tasca in acciaio inossidabile con grasso termico

E=Sensore di riferimento, immerso in acqua senza tasca

La deriva termica varia da 0.5°C a 1°C a seconda della scelta della tasca

Lunghezza del pozzetto termico 100 mm, tubo con Diametro Interno di 6 mm dotato di un sensore di temperatura a resistenza Pt100 dia. 5 mm. Lo spessore della parete del tubo è di 1 mm in rame e 0.5 mm in acciaio inossidabile. Pozzetti termici affiancati nello stesso flusso d'acqua. Le soluzioni preferite in questo catalogo sono i pozzetti termici in acciaio inossidabile 304L o 316L, con una distanza di 0.5 mm dall'elemento di misurazione, e il grasso di contatto termico.

E-5 Soluzioni di montaggio del taglio termico

La funzione del taglio termico è solitamente quella di garantire la massima sicurezza in caso di funzionamento a secco e di guasto di altri organi di sicurezza.

Una delle caratteristiche critiche dei fusibili termici è la temperatura massima a cui possono essere sottoposti dopo l'attivazione. Un'elevata sovraelongazione dopo l'innesco danneggia il meccanismo del fusibile e può chiudere nuovamente il circuito elettrico. Devono inoltre attivarsi rapidamente, prima che il corpo del serbatoio abbia raggiunto una temperatura tale da comportare il rischio di autoaccensione dei materiali nelle vicinanze.

Il posizionamento dei TCO, il loro tempo di risposta, la loro sovraelongazione dopo l'intervento sono quindi impostazioni di sicurezza essenziali. Questi parametri vengono solitamente regolati per prova.

Tipo	Descrizione	Vantaggi	Svantaggi
5 4 3 2 1	Taglio termico incorporato nella zona fredda del riscaldatore tubolare. 1: TCO 2: Isolamento con riempimento in silicone 3: Parete tubolare del riscaldatore 4: Isolante in ceramica 5: Connettore del riscaldatore tubolare	 Basso costo Tempo di risposta accettabile in caso di aumento lento della temperatura. Può essere montato su tutti i riscaldatori tubolari di un serbatoio. 	- Basso costo - Tempo di risposta accettabile in caso di aumento lento della temperatura Può essere montato su tutti i riscaldatori tubolari di un serbatoio.
5 4 3 2 1	Taglio termico all'interno della tasca dedicata. 1: TCO 2: Stivale isolante in silicone 3: Parete tascabile 4: Manicotto termoretraibile 5: Gommino antistrappo	- Tempo di risposta rapido Sostituibile Il posizionamento vicino alla zona di riscaldamento dei riscaldatori tubolari consente di regolare il tempo di risposta e di evitare il conseguente surriscaldamento. Questa è la soluzione che consigliamo per i riscaldatori di questo catalogo.	- Richiede una tasca aggiuntiva per ogni TCO. - Costo più elevato.

E-6 Condizione di funzionamento a secco, tempo di risposta del taglio termico rispetto alla distanza del pozzetto termico con riscaldatore tubolare, per 5W/cm² e 10W/cm²

Le condizioni di rilevamento del funzionamento a secco sono caratterizzate da un rapido aumento della temperatura dei riscaldatori tubolari, pari a circa 400°C al minuto per i riscaldatori da 10W/cm². In queste condizioni, il tempo di risposta è fondamentale per evitare che la temperatura degli elementi riscaldanti superi gli 800°C (la distruzione appare a circa 840°C) o che la superficie del serbatoio raggiunga la temperatura massima dell'isolamento termico (di solito 150°C). Per un rilevamento conforme a questi criteri, la distanza tra il pozzetto termico del TCO e il tubo riscaldatore tubolare deve essere la più piccola possibile e la conducibilità termica deve essere migliorata, ad esempio riducendo lo spessore della parete a 5/10 mm per i tubi del pozzetto termico in acciaio inossidabile. Per sfruttare le correnti di convezione termica, è importante che il pozzetto termico sia situato verticalmente sopra il riscaldatore tubolare.

Il superamento massimo della temperatura consentito per l'apertura del TCO a 122°C è limitato a 175°C, poiché la fusione dell'isolamento interno del TCO potrebbe consentire un contatto elettrico tra i due conduttori e autorizzare nuovamente il riscaldamento.

La temperatura massima del cablaggio del TCO non deve superare i 200°C (isolamento in FEP), poiché la fusione dell'isolamento del filo potrebbe consentire un contatto elettrico tra i due conduttori e autorizzare nuovamente il riscaldamento.

Tempi di risposta superiori a 2 minuti a 10W/cm² o a 4 minuti a 5W cm² causano un aumento della temperatura della parete superiore del serbatoio fino a 150°C (test effettuati a 25°C di temperatura ambiente). <u>I test descritti di seguito mirano a</u> determinare i limiti di posizione.

Descrizione del test

Test eseguiti su un pozzetto termico in acciaio inossidabile di 9 mm di diametro interno e 0.5 mm di spessore della parete, posizionato sopra un singolo riscaldatore tubolare con carico superficiale di 5W/cm² o 10W/cm², a una distanza variabile D. Il tempo misurato è il tempo impiegato da un taglio termico calibrato a 122°C per attivarsi quando la resistenza è alimentata.

Il taglio termico è isolato elettricamente da una guaina in silicone la cui resistenza alla temperatura è superiore a 220°C. La temperatura del TCO è misurata da una termocoppia situata all'interno della guaina in silicone.

5W/cm²

	211/3111						
D (mm)	Materiale della tasca	Tempo di intervento (min: sec)	Temperatura superficiale del riscaldatore tubolare	Superamento della temperatura TCO dopo l'intervento	Commenti		
	Ss304	2,08	515	210	 Tempo di risposta accettabile, Surriscaldamento molto ridotto della superficie del riscaldatore tubolare. Temperatura di surriscaldamento del TCO fuori limite. Temperatura dei fili fuori limite 		
0 -	Cu	2,18	528	215	 Tempo di risposta accettabile. Surriscaldamento molto ridotto della superficie del riscaldatore tubolare. Temperatura di surriscaldamento del TCO fuori limite. Temperatura dei fili fuori limite 		
2	SS304	3,10	634	- Tempo di risposta accettabile Surriscaldamento molto ridotto della superficie del riscalda - Temperatura di surriscaldamento del TCO fuori limite Temperatura dei fili accettabile			
2	Cu	3,26	636	193	 Tempo di risposta accettabile, Surriscaldamento accettabile del riscaldatore tubolare. Temperatura di surriscaldamento del TCO ai limiti elevati. Temperatura dei fili accettabile 		
5	SS304	3,28	641	145	 Tempo di risposta accettabile, Surriscaldamento molto ridotto della superficie del riscaldatore tubolare. Temperatura di surriscaldamento del TCO accettabile. Temperatura dei fili accettabile 		
5	Cu	3,50	655	152	 Tempo di risposta accettabile. Surriscaldamento accettabile della superficie del riscaldatore tubolare. Temperatura di surriscaldamento del TCO accettabile. Temperatura dei fili accettabile 		
10	SS304	3,40	637	145	- Tempo di risposta accettabile, - Surriscaldamento molto ridotto della superficie del riscaldatore tubolare. - Temperatura di surriscaldamento del TCO accettabile. - Temperatura dei fili accettabile		
10	Cu	4,08	665	145	 Tempo di risposta al limite alto, Surriscaldamento accettabile della superficie del riscaldatore tubolare. Temperatura di surriscaldamento del TCO accettabile. Temperatura dei fili accettabile 		

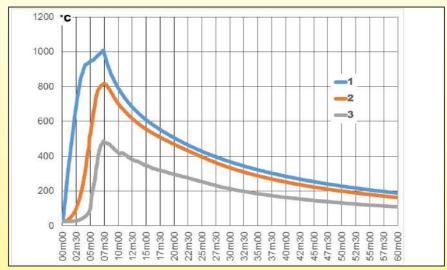
10W/cm²

	10W/cm ²						
D (mm)	Materiale della tasca	Tempo di intervento (min: sec)	Temperatura superficiale del riscaldatore tubolare	Superamento della temperatura TCO dopo l'intervento	Commenti		
0	SS304	1.33	694	267	 Buon tempo di risposta, Surriscaldamento accettabile della superficie del riscaldatore tubolare. Temperatura di surriscaldamento del TCO fuori dai limiti. Temperatura dei fili fuori dai limiti. 		
	Cu	1.35	697	265	 - Tempo di risposta accettabile, - Surriscaldamento accettabile della superficie del riscaldatore tubolare. - Temperatura di surriscaldamento del TCO fuori dai limiti. - Temperatura dei fili fuori dai limiti. 		
2	SS304	2.10	812	264	 Tempo di risposta al limite alto. Surriscaldamento della superficie del riscaldatore tubolare al limite alto. Temperatura di surriscaldamento del TCO al limite alto. Temperatura dei fili accettabile 		
2	Cu	2.16	832	264	 - Tempo di risposta al limite alto, - Surriscaldamento della superficie del riscaldatore tubolare al limite alto. - Temperatura di surriscaldamento del TCO fuori dai limiti. - Temperatura dei fili fuori limite. 		
5	SS304	2.24	823	167	 - Tempo di risposta al limite alto. - Surriscaldamento della superficie del riscaldatore tubolare al limite alto. - Temperatura di surriscaldamento del TCO al limite alto. - Temperatura dei fili accettabile 		
3	Cu	2.32	840	176	 Tempo di risposta al limite alto. Surriscaldamento della superficie del riscaldatore tubolare al limite alto. Temperatura di surriscaldamento del TCO al limite alto. Temperatura dei fili accettabile 		
10	SS304	2.30	830	176	 Tempo di risposta al limite alto. Surriscaldamento della superficie del riscaldatore tubolare al limite alto. Temperatura di surriscaldamento del TCO al limite alto. Temperatura dei fili accettabile 		
10	Cu	2.35	833	175	 Tempo di risposta al limite alto. Surriscaldamento della superficie del riscaldatore tubolare al limite alto. Temperatura di surriscaldamento del TCO al limite alto. Temperatura dei fili accettabile 		

Conclusioni del test

La riduzione della distanza dal riscaldatore tubolare riduce il tempo di risposta, ma aumenta il surriscaldamento del fusibile e dei fili. L'aumento della distanza tra il riscaldatore tubolare e il TCO consente di rimanere entro limiti di surriscaldamento accettabili per il TCO e i suoi fili. L'impatto del materiale della tasca non è molto importante, e sorprendentemente la tasca in rame ha un tempo di risposta leggermente superiore a quella in acciaio inossidabile, probabilmente perché dissipa più rapidamente su tutta la superficie il calore ricevuto su un lato. In un primo approccio si può ritenere che le distanze tra 5 e 10 mm siano accettabili nelle riserve di test della configurazione finale.

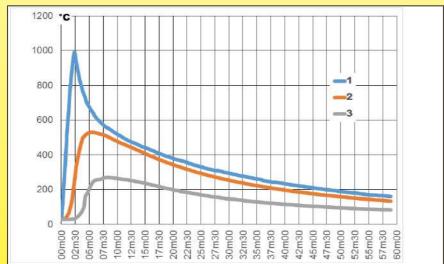
miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.



E-7 Risultati dei test a secco effettuati su riscaldatori con e senza fusibile termico

Senza fusibile termico

Test in condizioni di funzionamento a secco, senza taglio termico, nelle condizioni più critiche e con i sistemi di sicurezza scollegati, la temperatura superficiale degli elementi riscaldanti può raggiungere i 1000°C in meno di 2 minuti e 30 secondi e la parete del serbatoio può raggiungere gli 800°C in 7 minuti.


Il tempo di risposta e le temperature superficiali sono parametri variabili che dipendono dalla configurazione interna del serbatoio, dal suo volume, dalla potenza totale e dal numero di riscaldatori tubolari. Senza TCO, il riscaldamento si arresta solo quando il filo di riscaldamento della resistenza si fonde per surriscaldamento (circa 1000-1100 °C) o quando si verifica una perdita di corrente che fa scattare il GFCI.

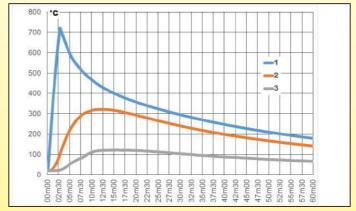
Test effettuati su riscaldatore liquido dia. 125 mm, con 3 riscaldatori tubolari da 1kw ciascuno, carico superficiale 5W/cm², con isolamento termico in schiuma NBR-PVC da 20 mm e mantello in alluminio. La temperatura della parete del serbatoio sale a più di 800°C. In queste condizioni, la schiuma si accende in meno di 7 minuti. (6 minuti 50 secondi)

In questo test, si può vedere che due elementi riscaldanti si sono fusi a 950°C molto prima del terzo (1027°C), e questo ha ridotto la velocità di aumento della temperatura.

- 1: Temperatura superficiale dei riscaldatori tubolari
- 2: Temperatura superficiale della parete del serbatoio in acciaio inossidabile (posizione capovolta)
- 3: Temperatura superficiale dell'esterno dell'isolamento termico.

Test effettuati su un riscaldatore di liquido dia. 125 mm, con 3 riscaldatori tubolari da 2kw ciascuno, carico superficiale da 10W/cm², con isolamento termico in schiuma NBR-PVC da 20 mm e mantello in alluminio. La temperatura della parete del serbatoio sale a più di 520°C. In queste condizioni, la schiuma si è accesa in meno di 3 minuti.

- 1: Temperatura superficiale dei riscaldatori tubolari
- 2: Temperatura superficiale della parete del serbatoio in acciaio inossidabile (posizione capovolta)
- 3: Temperatura superficiale dell'esterno dell'isolamento termico.

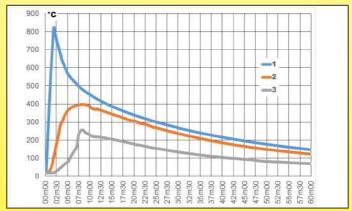


Con taglio termico a 122°C

Nello stesso test con taglio termico, la temperatura massima dipende principalmente dalla sua posizione rispetto ai riscaldatori tubolari, quindi dalla posizione di installazione e, in misura minore, dalla sua temperatura di funzionamento "Tf". In particolare, il TCO deve sopportare in modo continuo e senza falsi interventi la temperatura del liquido che scorre nel serbatoio. La temperatura permanente che il fusibile termico può supportare è definita dal parametro di temperatura di movimentazione "Th" specificato sulla sua scheda tecnica. Per un fusibile termico con una temperatura nominale "Tf" di 122°C, questo valore è di 94°C. Questo valore "Th" è stato scelto perché supera la normale temperatura di funzionamento di uno scaldabagno e il valore nominale di attivazione è superiore alle soglie degli altri dispositivi di sicurezza.

I tempi di risposta e le temperature superficiali raggiunte possono variare a seconda della configurazione interna del serbatoio, del suo volume, del suo isolamento termico, nonché della potenza totale e del numero di riscaldatori tubolari. Sono quindi necessari test di qualificazione per ogni configurazione.

I test descritti di seguito sono stati eseguiti con un fusibile termico con "Tf" = 122°C e "Th" = 94°C. È stato montato in un pozzetto termico in acciaio inossidabile dia. di 10 mm, spessore della parete di 0.5 mm situato a 3~4 mm in verticale dall'elemento riscaldante superiore.


Test effettuati su un riscaldatore di liquido dia. 125 mm, con 3 riscaldatori tubolari da 2kw ciascuno, carico superficiale 5W/cm², con isolamento termico in schiuma NBR-PVC da 20 mm e mantello in alluminio. Interruttore termico di 122°C.

- 1: Temperatura superficiale dei riscaldatori tubolari
- 2: Temperatura superficiale della parete del serbatoio in acciaio inossidabile (posizione capovolta)
- 3: Temperatura superficiale della parte esterna dell'isolamento termico

Il TCO si spegne in 2 minuti e 50 secondi, prima della distruzione degli elementi riscaldanti

La temperatura della parete in acciaio inossidabile non supera i 320°C

Non si verifica l'accensione della schiuma

Test effettuati su un riscaldatore di liquido dia. 125 mm, con 3 riscaldatori tubolari da 2kw ciascuno, carico superficiale 10W/cm², con isolamento termico in schiuma NBR-PVC da 20 mm e mantello in allumino. Interruttore termico di 122°C.

- 1: Temperatura superficiale dei riscaldatori tubolari
- 2: Temperatura superficiale della parete del serbatoio in acciaio inossidabile (posizione capovolta)
- 3: Temperatura superficiale della parte esterna dell'isolamento termico

Il TCO si spegne in un minuto e 45 secondi.

La temperatura della parete in acciaio inossidabile non supera i 400°C

Non si verifica l'accensione della schiuma

F-Termostati a montaggio superficiale

F-1 Soluzioni di montaggio dei termostati a superficie

Nelle applicazioni di riscaldamento, i termostati a disco sono spesso utilizzati come sicurezza per le alte temperature del liquido che scorre nel riscaldatore. Montati sulla parete esterna, il loro metodo di montaggio è fondamentale per una corretta e rapida misurazione della temperatura.

Il montaggio deve soddisfare i requisiti di conducibilità termica, garantire un buon contatto con la superficie ed evitare il rischio di corrosione galvanica.

Poiché la superficie piatta del termostato misura la temperatura a contatto con la parete del serbatoio, è importante che il trasferimento di calore sia efficiente, per cui si consiglia di utilizzare un grasso di contatto termico.

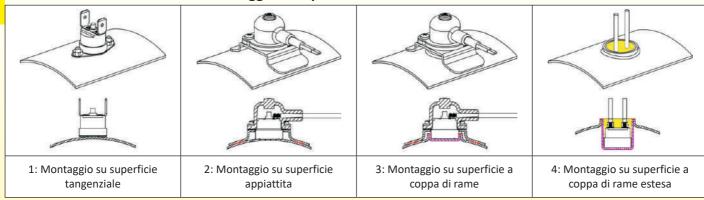
Come regola generale, il termostato di superficie deve essere installato nella parte superiore del serbatoio, in un punto in cui non vi sia il rischio di accumulo di aria.

Tipo	Descrizione	Vantaggi	Svantaggi
	Termostato con staffa piatta, montato con borchie saldati a punti sulla superficie.	La soluzione più economica	 Il montaggio su superfici cilindriche è possibile, ma il contatto termico avviene solo su una linea. La resistenza delle saldature è difficile da controllare in produzione. Se si rompe una sola borchia, il termostato non misura più la temperatura. Il montaggio su superfici cilindriche è possibile, ma il contatto termico avviene solo su una linea.
	Termostato con staffa piatta, infilata sotto una staffa saldata a punti in acciaio inossidabile.	- Montaggio facile e veloce - Economico.	- Difficile o impossibile da usare su superfici non piane. - Il termostato può scivolare fuori dalla staffa.
	Termostato con staffa a tazza estesa, spinto sulla superficie da due viti su una staffa in acciaio inossidabile saldata a punti sul serbatoio.	La saldatura a 4 punti della flangia in acciaio inossidabile garantisce la sicurezza della saldatura. Le due viti di fissaggio sulla flangia del termostato garantiscono un buon contatto termico, che rimane costante grazie alla flessibilità della staffa del termostato. Questa è la soluzione preferita per i riscaldatori di questo catalogo.	- Il montaggio su superfici cilindriche è possibile, ma il contatto termico avviene solo su una linea. Per migliorare il contatto termico, si consiglia di stampare una superficie piana in corrispondenza del termostato.
	Termostato con staffa a tazza estesa, spinta su una tazza di rame saldata a TIG attraverso la superficie e fissata con due viti su una staffa in acciaio inossidabile saldata a punti sul serbatoio.	- Tempo di risposta rapido alla temperatura, - Può essere utilizzato come sicurezza per il funzionamento a secco se la distanza dalla superficie del riscaldatore tubolare è pari o inferiore a 5 mm.	- Piuttosto costoso. - Resistenza alla pressione ridotta, poiché la parete di rame si deforma più rapidamente del serbatoio.
	Termostato senza staffa, all'interno di una tazza di rame imbutito riempita di epossidico e saldata a TIG attraverso la parete del serbatoio.	 Il più rapido tempo di risposta alla temperatura Impermeabile, anche nella versione a reset manuale. Può essere utilizzato come sicurezza per il funzionamento a secco se la distanza dalla superficie del riscaldatore tubolare è pari o inferiore a 5 mm. 	 Piuttosto costoso. Resistenza alla pressione ridotta, poiché la parete di rame si distorce più rapidamente del serbatoio. Il termostato non può essere rimosso o modificato.

F-2 Soluzioni di tenuta per termostati a disco

Nelle applicazioni di riscaldamento, i termostati a disco sono montati sulla parete esterna, dove possono essere soggetti a possibili rischi di condensa.

Le loro connessioni devono essere protette da contatti accidentali, soprattutto per i modelli a reset manuale.


L'introduzione di acqua nel corpo di un termostato a disco può causare la carbonizzazione ed eventualmente l'infiammazione del corpo in plastica.

Tipo	Descrizione	Vantaggi	Svantaggi
	Non protetto.	La soluzione più economica.	- Nessuna protezione contro i contatti accidentali - Omologato per l'uso in condizioni di inquinamento di grado 2 a 250 V ("Si verifica solo un inquinamento non conduttivo, ad eccezione di una conduttività temporanea causata dalla condensa").
	Guarnizioni epossidiche intorno ai terminali e alla crimpatura delle staffe.	- Buona protezione contro le infiltrazioni d'acqua all'interno del termostato.	 Nessuna protezione contro i contatti accidentali Omologato per l'uso in ambienti con grado di inquinamento 2 a 250 V (Si verifica solo un inquinamento non conduttivo, ad eccezione di una conduttività temporanea causata dalla condensa). Non disponibile nei modelli a reset manuale.
	Alloggiamento epossidico.	- Buona protezione contro la condensa e le gocce d'acqua Buona protezione contro i contatti accidentali.	- Prezzo medio. - Non disponibile sui termostati con staffa a tazza estesa.
	Sovrastampaggio	 Buona protezione contro la condensa e le gocce d'acqua. Buona protezione contro i contatti accidentali. Disponibile per termostati senza staffa, con staffa piatta e con staffa a tazza estesa. 	Più economico dell'incapsulamento epossidico. Non disponibile sui termostati a reset manuale.
	Alloggiamento epossidico con reset manuale.	- Buona protezione contro la condensa e le gocce d'acqua Buona protezione contro i contatti accidentali.	- Costo medio. Non disponibile sui termostati a disco con staffa a tazza estesa.
	Semplice stivale in silicone.	 Soluzione economica Buona protezione contro la condensa. Buona protezione contro i contatti accidentali. Può essere utilizzato anche per i modelli a reset manuale. Disponibile per tutti i modelli di staffe termostatiche. 	 La protezione può essere spostata durante la movimentazione e perdere la sua efficacia. Non è raccomandato per la protezione contro le gocce d'acqua. Il diametro del cavo deve essere rispettato.
	Stivale in silicone con anello di sicurezza.	 Basso costo. Buona protezione contro la condensa. Ottima protezione contro i contatti accidentali, è impossibile rimuovere la guaina durante la manipolazione. Può essere utilizzato anche per i modelli a reset manuale. Disponibile per termostati a disco con staffe a tazza piatte o estese. La soluzione preferita per i riscaldatori di questo catalogo. 	- Non è raccomandato per la protezione contro le gocce d'acqua. - Il diametro del cavo deve essere rispettato.

preavviso

F-3 Tempo di risposta termica in caso di aumento della temperatura del liquido, in base alle soluzioni di montaggio in superficie dei termostati a disco

In condizioni di funzionamento normali, la temperatura del liquido che attraversa il riscaldatore è stabile perché è controllata da un termostato.

I dispositivi di sicurezza come i limitatori di temperatura non devono intervenire. Per trovare le posizioni e i montaggi migliori dei limitatori di temperatura, è importante misurare i loro tempi di risposta in caso di surriscaldamento.

Per questo motivo abbiamo condotto dei test in due diverse condizioni operative, corrispondenti a due possibili guasti. Le condizioni di partenza per tutti i test sono:

Acqua a 50°C, termostato calibrato a 70°C nella posizione superiore del serbatoio in posizione orizzontale.

- La prima serie corrisponde a un lento aumento della temperatura di circa 0.4°C e 0.6°C al minuto, che può essere paragonato a un guasto della temperatura del sistema di controllo principale di un riscaldatore da 6 kW e 9 kW quando il liquido circola in un circuito con 125 litri di acqua. Questi test sono stati eseguiti con una pompa di circolazione a 3 velocità, per simulare il funzionamento di varie pompe. Si può notare che il tempo di risposta aumenta con la portata dell'acqua, poiché la convezione interna dell'acqua nel riscaldatore diminuisce quando la velocità aumenta. Questo importante parametro deve essere considerato nello sviluppo di un dispositivo. Nota: il tempo teorico per aumentare la temperatura da 50°C a 70°C è di 50 minuti a 0.4°C al minuto e di 33 minuti e 20 secondi a 0.6°C/min.
- La seconda serie corrisponde a un rapido aumento della temperatura di 20°C e 30°C al minuto, corrispondente all'aumento della temperatura dell'acqua in un riscaldatore da 6 kW e 9 kW con diametro di 125 mm x 310 mm, con un volume interno di 3.5 litri, in caso di interruzione improvvisa del flusso.

Tempo di risposta con aumento della temperatura di 0.4°C e 0.6°C/minuto con un flusso d'acqua di 20L/min.

	<u> </u>		•	<u> </u>
°C/min	N°1	N°2	N°3	N°4
0,40	3min 50sec	5min 10sec	3min 40 ec	3min 30sec
0,60	4 min	5min 20sec	3min 50sec	3min 30sec

Tempo di risposta con aumento della temperatura di 0.4°C e 0.6°C/minuto con un flusso d'acqua di 30L/min

°C/min	N°1	N°2	N°3	N°4
0,40	14min 30sec	15min 30sec	8min 20sec	7min 50sec
0,60	12min 20sec	13min 40sec	9min 40sec	9min 10sec

Tempo di risposta con aumento della temperatura di 0.4°C e 0.6°C/minuto con un flusso d'acqua di 40L/min

°C/min	N°1	N°2	N°3	N°4
0,40	33min 40sec	39min 20sec	31min 30sec	24min 20sec
0,60	30min 40sec	32min 20sec	26min 30sec	22min 20sec

Tempo di risposta con aumento di temperatura di 20 e 30°C/minuto, come avviene in caso di arresto del flusso.

°C/min	N°1	N°2	N°3	N°4
20	1min 20sec	1 minuto e 42sec	1min 12sec	1min 6sec
30	1min 4sec	1min 22sec	54sec	51sec

causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza

essere modificate senza preavviso. causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono

F-4 Tempo di risposta termica in condizioni di funzionamento a secco con la soluzione di montaggio del termostato in superficie

In alcune configurazioni, un termostato a disco montato a parete può rilevare il funzionamento a secco prima del deterioramento del riscaldatore tubolare e prima di un pericoloso surriscaldamento delle pareti del riscaldatore. Sono state testate diverse soluzioni di montaggio. La distanza tra la parte sensibile del termostato a disco (la coppa) e la parete esterna del riscaldatore tubolare è un parametro critico. Il contatto termico è ovviamente la soluzione che reagisce più rapidamente, ma questa configurazione non è fattibile perché richiederebbe che il riscaldatore tubolare tocchi la parete del serbatoio. Per questo motivo abbiamo sviluppato una coppa di rame estesa che fornisce un contatto termico diretto tra l'elemento riscaldante e il termostato, consentendo al contempo una distanza adeguata dalla parete del serbatoio.

Le temperature della superficie del serbatoio devono rimanere compatibili con il tipo di isolamento termico eventualmente utilizzato e con altri materiali combustibili vicini.

Abbiamo ritenuto che 800°C fosse la temperatura massima consentita sulla superficie del riscaldatore tubolare e 150°C la temperatura massima consentita sulla parete del serbatoio.

Questi valori non vengono generalmente superati quando il tempo di funzionamento a secco è inferiore a 2 minuti. I test riportati di seguito sono stati eseguiti nelle condizioni più sfavorevoli, con un riscaldatore tubolare di densità 10W/cm²watt. I termostati sono posizionati verticalmente sopra di esso. I termostati a disco sono impostati alla temperatura usuale per gli scaldacqua: 90°C.

Distanza tra il termostato a parete del serbatojo e il riscaldatore tubolare: 0 mm (contatto termico)

	Distanza tra il termostato a parete dei serbatoro e il riscandatore tubbiare. O mini (contatto termico)							
Tipo	Tempo di intervento	Temperatura superficiale del riscaldatore tubolare	Temperatura superficiale interna nel posto del termostato a disco	Temperatura di superamento del riscaldatore tubolare	Superamento della temperatura interna in corrispondenza del termostato a disco	Commenti		
Staffa piatta	1:34	687	137	695	162	Risultato medio per tutti i parametri		
Tazza estesa su superficie piana	1:02	517	140	519	176	Il miglior tempo di risposta, quasi un terzo più veloce di altre soluzioni, che consente il minor surriscaldamento del riscaldatore. Il superamento del termostato dopo l'intervento è compatibile con il suo funzionamento. Questa soluzione può essere utilizzata come sicurezza per il funzionamento a secco, ma è tecnicamente difficile da implementare.		
Inserto piatto in rame	1:34	700	160	705	167	Questa soluzione limita leggermente il surriscaldamento del termostato dopo l'intervento, in quanto la coppa di rame dissipa il calore.		
Tazza di rame estesa	1:28	706	167	707	137	Poiché la parte sensibile alla temperatura del termostato si trova lontano dalla parete del serbatoio, la sua è possibile implementare il termostato senza che il riscaldatore tubolare venga a contatto con la parete del serbatoio. Tuttavia, il contatto termico diretto con il riscaldatore tubolare limita l'uso del termostato alla sua applicazione come rilevamento del funzionamento a secco, poiché nel funzionamento normale il termostato rileva una temperatura dell'acqua viziata dalla temperatura superficiale del riscaldatore tubolare. In questo caso, è la soluzione tecnica con il tempo di risposta più rapido per il funzionamento a secco.		

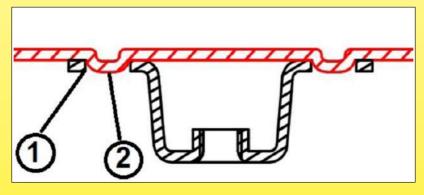
Distanza tra la parete del serbatoio in corrispondenza del termostato e il riscaldatore tubolare: 10 mm

Distanza tra la par	Distanza tra la parete dei serbatolo ili corrispondenza dei termostato e il riscaldatore tubblare. 10 mili							
Tipo	Tempo di intervento	Temperatura superficiale del riscaldatore tubolare	Temperatura superficiale interna nel posto del termostato a disco	Temperatura di superamento del riscaldatore tubolare	Superamento della temperatura interna in corrispondenza del termostato a disco	Commenti		
Staffa piatta	2:00	791	139	791	148	Risultati accettabili, ma il trasferimento di calore più lungo dovuto allo scarso contatto tra la parete e il termostato aumenta il tempo di risposta e il surriscaldamento che sono al limite.		
Tazza estesa su superficie piana	1:56	780	124	780	130	Il tempo di risposta più breve e il surriscaldamento più basso. Questa soluzione è la soluzione tecnica preferita per i riscaldatori di questo catalogo, perché è in grado di rilevare sia un aumento anomalo della temperatura dell'acqua sia il funzionamento a secco, a condizione che la sua posizione sia impostata correttamente.		
Inserto piatto in rame	2:12	821	150	821	183	Surriscaldamento significativo del riscaldamento tubolare, che supera gli 800°C.		
Tazza di rame estesa	2:18	794	113	825	180	Tempo di risposta più lungo perché l'aumento della distanza dalla parete dovuto all'estensione dello scodellino limita la riflessione del calore da parte della parete. L'ottimo trasferimento di calore riduce la temperatura di intervento, ma comporta un significativo surriscaldamento della resistenza e della parete.		

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

G-Soluzioni di montaggio a parete per riscaldatori di liquidi

A parte alcune applicazioni di riscaldatori con ingresso e uscita in linea tenuti in posizione da connessioni idrauliche, è necessario appenderli a una parete per evitare sollecitazioni eccessive come quelle che possono verificarsi durante il trasporto o a causa del peso del dispositivo.


Esistono diverse soluzioni.

G-1 Montaggio con borchie o bulloni

Disegno	Caratteristica	Vantaggi	Svantaggi
L M8 Ø12mm	Borchia M8	- Economico e sicuro - Nessun riscaldamento significativo durante la saldatura a scarica del condensatore - Facile passaggio attraverso l'isolamento - Disponibile su tutti i diametri del riscaldatore	- Resistenza di saldatura casuale e incontrollabile - Ampie tolleranze di posizionamento - Ampie tolleranze di spaziatura
L 5mm M8 Hex 13mm	Bullone M8	- Il più economico - Facile passaggio attraverso l'isolamento - Disponibile su tutti i diametri del riscaldatore	- La saldatura sul corpo del serbatoio provoca un forte surriscaldamento a causa delle differenze di spessore delle pareti. Grande rischio di ulteriore corrosione Ampie tolleranze di posizionamento - Ampie tolleranze di ortogonalità

G-2 Posizionamento preciso di staffe e accessori

Per garantire un posizionamento preciso degli accessori, come le staffe di montaggio a parete, i termostati..., abbiamo sviluppato un sistema di posizionamento delle borchie stampate. Gli accessori vengono centrati automaticamente sulle borchie, la cui posizione è fissata dallo stampo di imbutitura del corpo del serbatoio. Non è quindi possibile alcun errore di posizionamento.

- 1: Fori di posizionamento nell'accessorio
- 2: Borchie disegnate sulla parete del serbatoio

G-2 Montaggio delle gambe

Disegno	Caratteristiche	Vantaggi	Svantaggi			
15mm M5 11.2mm 26mm 35mm 10mm Ø5.2mm (X2)	Staffa miniaturizzata M5	- Economica e sicura - Nessun riscaldamento significativo durante la saldatura a scarica del condensatore. - Il doppio punto di saldatura aumenta l'affidabilità del fissaggio. - Facile passaggio attraverso l'isolamento fino a 12 mm. - Montaggio a vite attraverso la parete di supporto - Eccellente precisione di posizionamento grazie ai rilievi presenti nel corpo del serbatoio. - Tolleranze di posizionamento angolare molto basse - Possibilità di montare i piedini (vedi sotto) - Disponibile per tutti i diametri del riscaldatore Questa è la soluzione consigliata per i riscaldatori di questo catalogo	- Non è adatto per l'isolamento di 20 mm di spessore.			
25mm 25mm 25mm 25mm (x2) 35mm (x2) 12.7mm 30mm 27mm 6mm 27mm R5mm	Staffa miniaturizzata M5 con gambe	 Nessun riscaldamento significativo durante la saldatura a scarica del condensatore. Il doppio punto di saldatura aumenta l'affidabilità del fissaggio. Facile passaggio attraverso l'isolamento fino a 12 mm Eccellente precisione di posizionamento grazie ai rilievi presenti nel corpo del serbatoio. Tolleranze di posizionamento angolare molto basse Piedini rimovibili che riducono il volume e i costi di trasporto Disponibile per tutti i diametri del riscaldatore 	- Bassa resistenza meccanica			
23mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm	Gambe con fascetta stringitubo	- Nessuna saldatura sul serbatoio - Regolabile in qualsiasi posizione - Piedini rimovibili per ridurre il volume e i costi di trasporto - Disponibile per tutti i diametri del riscaldatore	- Non è raccomandato per i riscaldatori con schiuma isolante La fascetta stringitubo è costosa per i grandi diametri.			
17 mm 17 mm 19 mm	Gambe lisce saldate sulle flange	 Nessun riscaldamento significativo durante la saldatura a scarica del condensatore. Il doppio punto di saldatura aumenta l'affidabilità del fissaggio. Elevata resistenza meccanica Disponibile per tutti i diametri del riscaldatore Utilizzabile con qualsiasi spessore di isolamento 	- Nessuna regolazione possibile - Costoso			

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

H-Regole di cablaggio.

H-1 Protezioni dei terminali dopo la sigillatura finale

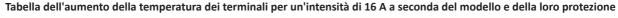
H-1 Protezioni dei terminali dopo la sigiliatura finale						
Disegno	Caratteristiche	Vantaggi	Svantaggi			
5mm 3	Terminale M4 standard 1: Isolamento contro l'ingresso di umidità. 2: L'isolante ceramico garantisce la resistenza meccanica, il centraggio e la conformità alla distanza in aria e alla distanza di tracciamento richiesta dagli standard. 3: Parete del serbatoio 4: Saldatura TIG tra la parete del serbatoio e il tubo del riscaldatore	Standard in tutti i riscaldatori di questo catalogo, consente di utilizzare questi terminali sui seguenti gradi di inquinamento - 250V: Grado di inquinamento 4 (L'inquinamento genera una conduttività persistente causata da polvere conduttiva o da pioggia o neve) 400V: Grado di inquinamento 3 (Si verifica un inquinamento conduttivo o un inquinamento secco non conduttivo che diventa conduttivo a causa della condensa che è prevedibile.	- Nessuna protezione contro i contatti accidentali. La lunghezza di - 5 mm deve essere rigorosamente rispettata dopo il cablaggio dei terminali Nessuna protezione contro le infiltrazioni d'acqua			
B 9 mm	Terminale M4 standard per microambienti altamente inquinati. 1: Isolamento contro l'ingresso di umidità. 2: L'isolante ceramico garantisce la resistenza meccanica, il centraggio e la conformità alla distanza in aria e alla distanza di tracciamento richiesta dagli standard. 3: Parete del serbatoio 4: Saldatura TIG tra la parete del serbatoio e il tubo del riscaldatore.	Sulla norma EN 60335-1, allegato M, la distanza di 9 mm (1mm più lunga di quanto richiesto dalla norma), disponibile su richiesta su tutti i riscaldatori di questo catalogo, consente di utilizzare questi terminali sul grado di inquinamento 4 in 250 e 400V. (L'inquinamento genera conduttività persistente causata da polvere conduttiva o da pioggia o neve.)	 Nessuna protezione contro i contatti accidentali La lunghezza di 5 mm deve essere rigorosamente rispettata dopo il cablaggio dei terminali. Nessuna protezione contro le infiltrazioni d'acqua 			
	Terminale con filo saldato a punti, protetto da tubo termoretraibile a doppio strato. Strato interno fondente.	- Protezione contro le infiltrazioni d'acqua - Protegge dai contatti accidentali - Soluzione economica	- Non fornisce alcuna protezione aggiuntiva contro l'umidità, la resistenza degli elementi riscaldanti - Solo uscita rettilinea La rottura della saldatura a punti, che è il punto critico di questo assemblaggio, può causare un cortocircuito Protezione non garantita contro le infiltrazioni d'acqua.			
	Protezione in silicone sul terminale e sul filo.	 Facilità di installazione. Fornisce una protezione contro le infiltrazioni d'acqua da IP44 a IP54 (a seconda dei modelli). Utilizzato principalmente come protezione contro i contatti accidentali. Esiste per i terminali a vite M4, i terminali a connessione rapida 6.3 e i terminali verticali a filo saldato 	- Non forniscono alcuna protezione aggiuntiva contro l'umidità.			
	Protezione in silicone sul terminale e sul filo, in vaso di resina.	 Riduce in generale il tasso di assorbimento di umidità dell'elemento riscaldante. Permette di raggiungere una tenuta IP66. 	 Disponibile solo sui terminali di uscita laterali. Solo per il montaggio in fabbrica. 			
	Tutti i collegamenti dei riscaldatori tubolari sono completamente incapsulati con resina epossidica, con uscita a filo o a cavo.	 Garantisce la tenuta IP67 Divide per 10 il tasso di assorbimento dell'umidità di tutti gli elementi riscaldanti. Nei dispositivi con 3 o più elementi riscaldanti, questa soluzione è meno costosa della sigillatura dei singoli elementi riscaldanti. 	- Solo per il montaggio in fabbrica.			
	Tutti i collegamenti dei riscaldatori tubolari sono completamente incapsulati con resina epossidica, su un blocco di connessione incorporato.	 Garantisce la tenuta IP67, blocco di connessione escluso. Coperchio IP44 con pressacavo M20 disponibile per il blocco di connessione. Divide per 10 il tasso di assorbimento dell'umidità di tutti gli elementi riscaldanti. Permette la standardizzazione dei riscaldatori, indipendentemente dal cablaggio e dai cavi. 	- Solo per il montaggio in fabbrica.			

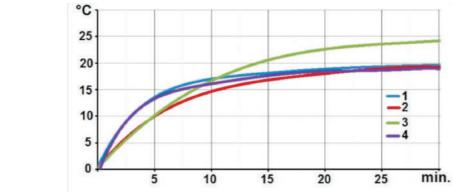
H-2 Aumento della temperatura dei terminali rispetto alla protezione e alla potenza

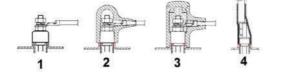
l terminali degli elementi riscaldanti sono riscaldati per effetto Joule dalla corrente che li attraversa. La resistenza di questi terminali dipende dalla resistività elettrica del metallo utilizzato, dall'intensità di corrente e inversamente proporzionale alla sezione trasversale.

Tabella di resistività dei materiali più comuni utilizzati per la produzione di terminali di riscaldamento tubolari

Materiale	Rame puro	63% rame ottone	Nichel puro	Acciaio	304SS
Resistività (Ohm*mm²/m)	0,017	0,067	0,087	0,1	0,73

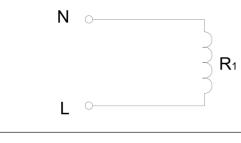

Valori comparativi della resistenza in milliohm di diversi tipi di terminali in base al loro materiale (calcolati per una lunghezza di 20 mm)


Tipo di terminale	Materiale					
ripo di terminale	Rame puro	63% rame ottone	Nichel puro	Acciaio	304SS	
Vite M4 (sezione trasversale dia. 3.3 mm)	0,040	0,157	0,20	0,234	1,7	
Dia. asta da 3 mm	0,048	0,190	0,25	0,283	2,1	
Vite M3 (sezione trasversale 2.5 mm)	0,069	0,273	0,35	0,408	3,0	
Terminale rapido 6.35×0.8 mm	0,067	0,266	0,35	0,397	2,9	
Dia. asta da 2 mm	0,108	0,427	0,55	0,637	4,6	

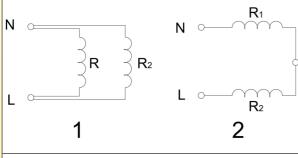

Valore comparativo della potenza dissipata con un'intensità di 16Amp (Watt)

Tipo di terminale	Materiale				
ripo di terminale	Rame puro	Ottone 63% rame	Nichel puro	Acciaio	304SS
Vite M4 (sezione trasversale dia. 3.3 mm)	0.010	0.040	0.052	0.060	0.437
Dia. asta da 3 mm	0.012	0.049	0.063	0.072	0,529
Vite M3 (sezione trasversale 2.5 mm)	0,018	0,070	0,091	0.104	0.762
Terminale rapido 6.35×0.8 mm	0,017	0,068	0.088	0.102	0.742
Dia. asta da 2 mm	0,028	0,109	0,142	0.163	1.190

I maggiori aumenti di temperatura sono quelli dei terminali in acciaio inossidabile. Essendo questo metallo, per altre ragioni tecniche, quello scelto come standard per la costruzione dei riscaldatori, abbiamo misurato l'autoriscaldamento dei terminali nei casi più comuni.

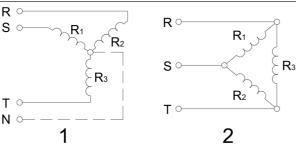

- 1: Terminale M4, senza tappo
- 2: Terminale M4 con tappo in silicone
- 3: Terminali M4 con guaina in resina siliconica
- 4: Terminale dia 3.5 mm con filo saldato a punti e guaina termoretraibile a 2 pareti

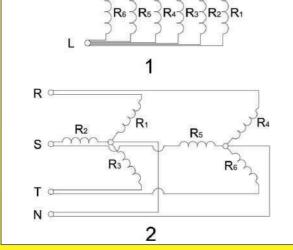
H-3 Configurazioni dell'elemento riscaldante in funzione della tensione di esercizio


I riscaldatori possono essere dotati da uno a 6 elementi riscaldanti tubolari. Il numero dipende dalla potenza richiesta, dal numero di fasi dell'alimentazione e dal numero di stadi di potenza necessari al sistema di regolazione della temperatura. Anche il numero di elementi riscaldanti è limitato dalle dimensioni del riscaldatore.

In genere, i sistemi inferiori a 3500 Watt possono essere alimentati con 230 Volt monofase, mentre per le potenze più elevate è preferibile utilizzare un sistema trifase a 400 Volt.

H-4 Schemi di cablaggio principali


Un solo elemento riscaldante, alimentazione a 230V


<u>Due elementi riscaldanti, alimentazione a 230 V (circuito1):</u> consente uno o due stadi di potenza (o tre stadi di potenza se R1 e R2 sono diversi), ma il collegamento a 400 V è impossibile. Può essere collegato in serie per l'utilizzo a 115V (circuito 2).

<u>3 riscaldatori, cablati a 400 volt:</u> questa disposizione non consente un'alimentazione monofase a 230 V, ma permette due stadi di potenza, passando dal cablaggio a stella (circuito 1) a quello a triangolo (circuito 2).

<u>3 riscaldatori, cablati a 400 volt:</u> questa disposizione non consente un'alimentazione monofase a 230V ma permette due stadi di potenza, passando dal cablaggio a stella (circuito 1) a quello a triangolo (circuito 2).

<u>6 riscaldatori, cablati a 230V:</u> questa disposizione consente un collegamento monofase a 230V con fino a 6 stadi di potenza con un collegamento in parallelo (circuito 1) e un collegamento trifase a 400V con uno o due stadi di potenza con cablaggio a stella (circuito 2).

H-5 Possibilità di montaggio degli elementi riscaldanti in base alle dimensioni del serbatoio e alla tensione di alimentazione

230V monofase		400V, 3 fasi		230V monofase con commutazione a 400V		
Un solo stadio di potenza	Due stadi di potenza	Un solo stadio di potenza	Due stadi di potenza	Un solo stadio di potenza	Due stadi di potenza	
Un solo riscaldatore tubolare	Due riscaldatori tubolari	3 riscaldatori tubolari	6 riscaldatori tubolari	3 riscaldatori tubolari cablati a 230V	6 riscaldatori tubolari cablati a 230V	
Serbatoio dia. da 70 a 140 mm	Serbatoio dia. da 76 a 140 mm	Serbatoio dia. da 76 a 140 mm	Serbatoio dia.125 o 140 mm	Serbatoio dia. da 76 a 140 mm	Serbatoio dia. 125 o 140 mm	

H-6 Confronto tra i cavi

Quando vengono utilizzati nei riscaldatori di questo catalogo, i cavi devono soddisfare vincoli specifici, che sono:

- Una classe di isolamento corrispondente alla tensione di alimentazione: I cavi di collegamento UL sono suddivisi in classi da 300V e 600V. Le tensioni sono misurate tra il conduttore centrale e la terra.

Nelle norme europee armonizzate (HAR) la tensione nominale dei fili è data da (Uo/U) dove Uo è la tensione efficace misurata tra il conduttore centrale e la terra e U il valore efficace tra due conduttori). Per i riscaldatori di questo catalogo, la tensione più comune è la classe 05 (300-500V), ma può essere utilizzata anche la classe 07 (450-750V).

NB: La tensione nominale del cavo deve essere almeno pari alla tensione nominale dell'impianto.

- Resistenza alla temperatura: A seconda del tipo di isolamento scelto, la temperatura massima può variare da 70°C (PVC standard) a 200°C (FEP) o addirittura a 250°C (silicone per alte temperature). Questo parametro è importante per i test di resistenza all'accensione e all'infiammabilità, ma anche perché un cavo con un'elevata temperatura di mantenimento ammette una maggiore intensità a parità di calibro.
- Resistenza dell'isolamento alla perforazione accidentale (resistenza all'abrasione): Il silicone è fragile, l'isolante può essere perforato da chiodi o colpito durante la manipolazione e l'incorporazione, quindi può essere necessario scegliere cavi con una treccia di protezione aggiuntiva, come H05SS-K. Questo aumenta le dimensioni del cablaggio, ma anche il costo. FEP ed ETFE hanno la migliore resistenza alla perforazione accidentale dell'isolamento.
- Diametro esterno del cavo: È il risultato dello spessore di isolamento necessario per soddisfare gli standard di isolamento corrispondenti alla tensione di alimentazione. FEP e ETFE hanno spessori molto bassi, che consentono un cablaggio più compatto. Il silicone e PVC, isolanti elettrici meno efficienti, possono richiedere spessori di parete fino a oltre 3 volte superiori.
- La capacità di adesione ai cavi da parte delle resine di rivestimento: le combinazioni dei diversi materiali isolanti e delle resine di rivestimento non sono tutte efficaci e alcune non offrono alcuna protezione contro l'ingresso dell'acqua.

PVC e XLPE si legano meglio con l'epossidico, mentre il silicone si lega correttamente solo con le resine siliconiche.

- Comportamento al fuoco, alogeni:

Quando le applicazioni richiedono una buona resistenza al fuoco e l'assenza di alogeni, è possibile utilizzare solo XPLE e silicone.

H-7 Resistenza alla trazione del materiale isolante (considerato come un indicatore della sensibilità al taglio accidentale dello strato isolante)

Silicone (Standard: EN-50525-2-41)	PVC Polivinilcloruro (Standard: EN-50525-2-11)	XLPE Polietilene reticolato	FEP Etilene propilene fluorurato	ETFE Etilene tetrafluoroetilene
4 N/mm²	10 N/mm²	18 N/mm²	23 N/mm²	42 N/mm²

H-8 Resistenza alla trazione del filo rispetto al materiale di rivestimento e al materiale di isolamento del filo

Nelle soluzioni tecniche per la sigillatura dei fili tramite invasatura, è importante che il legame tra l'isolamento del filo e la resina dell'invasatura sia efficace per evitare l'ingresso di acqua.

Alcune norme richiedono anche un valore minimo per i test di trazione di cavi e fili.

Abbiamo quindi condotto test tra diversi tipi di isolanti e resine per definire le soluzioni migliori. I fili sono stati sgrassati prima del riempimento senza alcun altro trattamento superficiale. Lo spessore dell'isolante è di 5 mm. Valori medi misurati su 5 campioni per ogni combinazione.

Resine	Fili isolati in PVC	Fili isolati	Fili isolati in silicone Fili isolati in polietilene reticolato		lene	Fili isolati in FEP
Silicone#1	0.88 DaN	0.88	DaN	1.56		0.21 DaN
Silicone#2	0.26 DaN	0.58	DaN	0.2		0.32 DaN
Silicone#3	3.3 DaN	2.18	DaN	6.7		0.21 DaN
Silicone#4	0.22 DaN	1.40	DaN	1.62		0.13 DaN
Epossidico#1	8.74 DaN*	1.46	DaN	13.0		1.36 DaN
Epossidico#2	8.96 DaN*	1.32	DaN	9.22		1.52 DaN
Epossidico#3	8.84 DaN*	1.42	DaN	8.98 DaN		2.14 DaN
Epossidico#4	7.42 DaN	1.26	DaN	10.74 DaN		1.80 DaN
Epossidico#5	7.52 DaN	1.14	DaN	8.48 DaN		1.60 DaN
Scars	0	Basso		Buono		Eccezionale

I valori sono molto variabili a seconda delle combinazioni, con rapporti da 1 a 40

- La resistenza all'estrazione dei fili in PVC è discreta o scarsa con la maggior parte delle resine siliconiche, ma eccellente con tutte le resine epossidiche.
- La resistenza all'estrazione dei fili isolati in silicone può essere molto buona, discreta o scarsa, a seconda della resina siliconica utilizzata, ma è media in tutti i casi con tutte le resine epossidiche.
- La resistenza all'estrazione dei fili isolati in polietilene reticolato è la migliore in tutte le combinazioni.
- La resistenza all'estrazione dei fili isolati in FEP è cattiva con tutte le resine siliconiche e da media a buona con le resine epossidiche.
- *: La rottura del filo o del suo isolamento si è verificata a questo valore, al di fuori del riempimento di resina.

H-9 Confronto dello spessore di isolamento dei fili di collegamento (valori medi in mm)

Materiale isolante	300V (HAR=H05)	450V(HAR=H07)	300V (UL)	600V (UL)
FEP (ETFE) sezione <1.5mm² (AWG15)	0.30		0.33	0.51
FEP (ETFE) sezione ≥1.5 mm² (AWG15)	0.35		0.33	0.51
XLPE (UL3266), sezione <awg14)< td=""><td></td><td></td><td>0.4</td><td></td></awg14)<>			0.4	
XLPE (UL3266), sezione AWG14~AWG10			0.5	
XLPE (UL3271)				0.79
PVC (H05V-K) ≤1mm²	0.6			
PVC (H07V-K) ≤1.5mm ²		0.7		
PVC (UL1007= 300V, UL1015= 600V)			0.4	0.79
PVC (H07V-K) >1.5mm², <10mm²		0.8		
Silicone H05S-K), ≤1.5mm²	0.8			
Silicone H05S-K, 1.5mm ²	0.9			
Silicone H05S-K, 2.5mm ²	1			
Silicone UL3212 (600V, -50+150°C)				1.14
Silicone UL3251 (600V, -50+250°C)				1.2

Q

H-10 Confronto tra i fili a trefoli utilizzati nel cablaggio interno delle apparecchiature

			1		C		le apparece.	T !
	AWG	Equivalente	Standard	Isolamento	Composizione	Diametro	Intervallo di	Tensione
	22	in mm²	1114220	FED	(quantità e diametro)	esterno	temperatura	nominale
	22	0.33	UL1330	FEP	19 × 0.15	1.8	-80+200	600V
	20	0.5	UL1330	FEP	19 × 0.19	2	-80+200	600V
	18	0.8	UL1330	FEP	19 × 0.235	2.3	-80+200	600V
	17	1.02	UL1330	FEP	19 × 0.26	2.38	-80+200	600V
	16	1.30	UL1330	FEP	19 × 0.30	2.6	-80+200	600V
	15	1.53	UL1330	FEP	19 × 0.32	2.7	-80+200	600V
	13	2.5	UL1330	FEP	19 × 0.41	3.13	-80+200	600V
	12	3.31	UL1330	FEP	19 × 0.48	3.52	-80+200	600V
	22	0.33	UL1331	ETFE	19 × 0.15	1.8	-80+150	600V
	20	0.5	UL1331	ETFE	19 × 0.19	2	-80+150	600V
	18	0.8	UL1331	ETFE	19 × 0.235	2.3	-80+150	600V
	17	1.02	UL1331	ETFE	19 × 0.26	2.38	-80+150	600V
	16	1.30	UL1331	ETFE	19 × 0.30	2.6	-80+150	600V
	15	1.53	UL1331	ETFE	19 × 0.32	2.7	-80+150	600V
	13	2.5	UL1331	ETFE	19 × 0.41	3.13	-80+150	600V
	12	3.31	UL1331	ETFE	19 × 0.48	3.52	-80+150	600V
	22	0.33	UL1332	FEP	19 × 0.15	1.45	-80+200	300V
	20	0.5	UL1332	FEP	19 × 0.19	1.65	-80+200	300V
_								
	18	0.8	UL1332	FEP	19 × 0.235	1.87	-80+200	300V
	17	1.02	UL1332	FEP	19 × 0.26	2.08	-80+200	300V
	16	1.30	UL1332	FEP	19 × 0.30	2.25	-80+200	300V
	15	1.53	UL1332	FEP	19 × 0.32	2.35	-80+200	300V
	13	2.5	UL1332	FEP	19 × 0.41	2.8	-80+200	300V
	12	3.31	UL1332	FEP	19 × 0.48	3.2	-80+200	300V
	22	0.33	UL1333	ETFE	19 × 0.15	1.45	-60+150	300V
	20	0.5	UL1333	ETFE	19 × 0.19	1.65	-60+150	300V
	18	0.8	UL1333	ETFE	19 × 0.19	1.87	-60+150	300V
	17	1.02	UL1333	ETFE	19 × 0.26	2.08	-60+150	300V
	16	1.30	UL1333	ETFE	19 × 0.30	2.25	-60+150	300V
	15	1.53	UL1333	ETFE	19 × 0.32	2.35	-60+150	300V
į.	13	2.5	UL1333	ETFE	19 × 0.41	2.8	-60+150	300V
	12	3.31	UL1333	ETFE	19 × 0.48	3.2	-60+150	300V
	(20)	0.5	VDE7673	FEP	19 × 0.185	1.59	-80+180	300V
	(18)	0.75	VDE7673	FEP	19 × 0.23	1.82	-80+180	300V
	(17)	1	VDE7673	FEP	19 × 0.26	1.96	-80+180	300V
	(15)	1.5	VDE7673	FEP	19 × 0.32	2.15	-80+180	300V
	(13)	2.5	VDE7673	FEP	19 × 0.40	2.73	-80+180	300V
	(11)	4	VDE7673	FEP	37 × 0.375	3.4	-80+180	300V
	22	0.33	UL3266	XLPE	17 × 0.16	1.56	-40+125°C	300V
	20	0.5	UL3266	XLPE	26 × 0.16	1.75	-40+125°C	300V
	18	0.8	UL3266	XLPE	16 × 0.254	1.98	-40+125°C	300V
	16	1.30	UL3266	XLPE	26 × 0.254	2.30	-40+125°C	300V
	14	2	UL3266	XLPE	41 × 0.254	2.88	-40+125°C	300V
	12	3.31	UL3266	XLPE	65 × 0.254	3.37	-40+125°C	300V
	22	0.33	UL3271	XLPE	17 × 0.16	2.35	-40+125°C	600V
<u> </u>								600V
	20	0.5	UL3271	XLPE	26 × 0.16	2.55	-40+125°C	
_	18	0.8	UL3271	XLPE	16 × 0.254	2.75	-40+125°C	600V
<u> </u>	16	1.30	UL3271	XLPE	26 × 0.254	3.10	-40+125°C	600V
<u></u>	14	2	UL3271	XLPE	41 × 0.254	3.50	-40+125°C	600V
	12	3.31	UL3271	XLPE	65 × 0.254	3.95	-40+125°C	600V
	(20)	0.5	H05V-K	PVC	16 × 0.2	2.2	-40+70 (90)	300/500V
	(18)	0.75	H05V-K	PVC	24 × 0.2	2.4	-40+70 (90)	300/500V
	(17)	1	H05V-K	PVC	32 × 0.2	2.5	-40+70 (90)	300/500V
	(15)	1.5	H07V-K	PVC	30 × 0.25	3.1	-40+70 (90)	450/750V
	(13)	2.5	H07V-K	PVC	49 × 0.25	3.7	-40+70 (90)	450/750V 450/750V
	(11)	4	H07V-K	PVC	56 × 0.3	4.4	-40+70 (90)	450/750V
	22	0.33	UL1015	PVC	17 × 0.16	2.35	-40+105	600V
	20	0.5	UL1015	PVC	26 × 0.16	2.55	-40+105	600V
	18	0.8	UL1015	PVC	16 × 0.254	2.75	-40+105	600V
	16	1.30	UL1015	PVC	26 × 0.254	3.10	-40+105	600V
	14	2	UL1015	PVC	41 × 0.254	3.50	-40+105	600V
	12	3.31	UL1015	PVC	65 × 0.254	3.95	-40+105	600V
	22	0.33	UL1007	PVC	41 × 0.254	1.6	-40+105	300V
 	20	0.5	UL1007	PVC	65 × 0.254		-40+105 -40+105	300V
<u> </u>						1.8		
<u> </u>	18	0.8	UL1007	PVC	41 × 0.254	2.1	-40+105	300V
<u></u>	16	1.30	UL1007	PVC	65 × 0.254	2.4	-40+105	300V
<u>L</u> _	14	2	UL1007	PVC	41 × 0.254	2.7	-40+105	300V
		0.04	UL1007	PVC	65 × 0.254	3.3	-40+105	300V
	12	3.31	OLIO07					
	12				20 × 0.18	2.52	-50+180	300/500V
	12 (20)	0.5	H05S-K	Silicone	20 × 0.18 30 × 0.18	2.52 2.73	-50+180 -50+180	300/500V 300/500V
	12 (20) (18)	0.5 0.75	H05S-K H05S-K	Silicone Silicone	30 × 0.18	2.73	-50+180	300/500V
	12 (20) (18) (17)	0.5 0.75 1	H05S-K H05S-K H05S-K	Silicone Silicone Silicone	30 × 0.18 40 × 0.18	2.73 2.91	-50+180 -50+180	300/500V 300/500V
	12 (20) (18)	0.5 0.75	H05S-K H05S-K	Silicone Silicone	30 × 0.18	2.73	-50+180	300/500V

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

AWG	Equivalente in mm ²	Standard	Isolamento	Composizione (quantità e diametro)	Diametro esterno	Intervallo di temperatura	Tensione nominale
22	0.33	UL3212	Silicone	41 × 0.254	3.1	-50+150	600V
20	0.5	UL3212	Silicone	65 × 0.254	3.3	-50+150	600V
18	0.8	UL3212	Silicone	41 × 0.254	3.5	-50+150	600V
16	1.30	UL3212	Silicone	65 × 0.254	3.8	-50+150	600V
14	2	UL3212	Silicone	41 × 0.254	4.2	-50+150	600V
12	3.31	UL3212	Silicone	65 × 0.254	4.6	-50+150	600V
22	0.33	UL3251	Silicone	41 × 0.254	3.1	-50+250	600V
20	0.5	UL3251	Silicone	65 × 0.254	3.3	-50+250	600V
18	0.8	UL3251	Silicone	41 × 0.254	3.5	-50+250	600V
16	1.30	UL3251	Silicone	65 × 0.254	3.8	-50+250	600V
14	2	UL3251	Silicone	41 × 0.254	4.2	-50+250	600V
12	3.31	UL3251	Silicone	65 × 0.254	4.6	-50+250	600V

H-11 Confronto di prezzo rispetto a H07-VK (fili da 1.5 mm²*)

Isolamento	PVC*	PVC	Silicone	XLPE 300V	ETFE300V	FEP 300V	FEP 600V
	(H05V-K 70°)	(H07V-K70°)	(H05S-K)	(UL3398, 150°)	(VDE 7994)	(VDE 7623)	(VDE 7997)
Rapporto	(0,93)	1	1.33	1.34	2.30	2,62	3,20

^{*} L'H05V-K non viene prodotto per spessori superiori a 1 mm².

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

H-12 Isolamento di cavi e fili e ritardanti di fiamma e zero alogeni

- Due alogeni, il cloro e il fluoro, sono ampiamente utilizzati nei composti per l'isolamento dei cavi elettrici. I composti alogenati sono normalmente molto stabili. Quando bruciano, tuttavia, gli alogeni si separano e diventano altamente reattivi, formando gas molto tossici, estremamente pericolosi e corrosivi che possono danneggiare in modo significativo materiali organici, inorganici e metallici, animali ed esseri umani.
- Gli additivi vengono aggiunti a queste plastiche per prevenire, ritardare o limitare la loro accensione. Sono regolamentate da due diverse serie di norme:

quelli che regolano la progettazione dei componenti delle apparecchiature elettriche, per evitare che prendano fuoco (autoestinguenti) e quelli che regolano la progettazione dei prodotti utilizzati nell'edilizia o nei trasporti per ritardare la diffusione del fuoco (ritardanti di fiamma).

Nota: essendo gli alogeni ottimi additivi nelle materie plastiche per renderle autoestinguenti, alcuni cavi realizzati con materiali privi di alogeni (XLPE, silicone) possono averne un contenuto significativo nelle versioni autoestinguenti a basso prezzo.

Norme	PVC	XLPE	Silicone	ETFE (Tefzel)	FEP
Autoestinguente (UL94)	UL94-VO senza necessità di additivi	UL94-V0 (alcuni gradi UL94-V0 possono contenere dal 7 al 17% di ritardante di fiamma alogenato)	UL94-HB a HL94-V0 (alcuni gradi UL94-V0 possono contenere dal 7 al 17% di ritardante di fiamma alogenato)	UL94-VO senza necessità di additivi	UL94-VO senza bisogno di additivi
Ritardante di fiamma (UL1581- sezione 1080) (equivalente a IEC60332-1-2)	UL VW-1	UL VW-1	UL VW-1 + Elevato punto di accensione + In caso di incendio forma uno strato isolante SiO2	UL VW-1	ULVW-1
Senza alogeni (IEC60754)	22-29% Cloro	Senza alogeni se si utilizzano gli additivi giusti	Senza alogeni se si utilizzano gli additivi giusti	59% di fluoro	62-78% di fluoro

UL 94, Infiammabilità delle materie plastiche per parti di dispositivi ed apparecchi.

Lo standard classifica le materie plastiche in base al modo in cui bruciano in vari orientamenti e spessori. Le classificazioni vanno dalla più bassa (meno ignifuga) alla più alta (più ignifuga):

HB: combustione lenta su un campione orizzontale; velocità di combustione <76 mm/min per spessori <3 mm e arresto della combustione prima di 100 mm

V-2: la combustione si arresta entro 30 secondi su un campione verticale; sono consentite gocce di particelle infuocate.

V-1: la combustione si arresta entro 30 secondi su un campione verticale; sono consentiti sgocciolamenti di particelle purché non infiammate.

V-0: la combustione si arresta entro 10 secondi su un campione verticale; sono consentiti sgocciolamenti di particelle purché non infiammate.

5VB: la combustione si arresta entro 60 secondi su un campione verticale; non sono consentiti gocciolamenti; i campioni di placca possono sviluppare un foro.

5VA: la combustione si arresta entro 60 secondi su un campione verticale; non sono consentiti gocciolamenti; i campioni di placca non possono sviluppare un foro.

VW-1 Test di fiamma su filo verticale (UL 1581)

Si tratta di un test su scala ridotta condotto su un singolo filo di 24 pollici. La fonte di fiamma è un becco Bunsen. La fiamma viene applicata per 15 secondi e poi riapplicata altre 4 volte ogni volta che il filo cessa di bruciare. Se il campione brucia per più di 60 secondi dopo ogni applicazione, o se la bandierina di carta o l'ovatta si incendiano durante il test, il cavo non supera il test. Il test FT-1 della CSA (Canadian Standards Association) è molto simile.

IEC 60754 Test sui gas emessi durante la combustione di materiali dai cavi

Parte 1: Determinazione della quantità di gas acido alogeno (Determina il livello di emissione di alogeni dei materiali utilizzati nel cavo)

- L'acido alogeno emesso dopo 60 minuti di combustione viene catturato, assorbito in una soluzione di test ed espresso come quantità di acido cloridrico o fluoridrico.

Il livello di acido cloridrico o idrofluorico misurato nella soluzione di test deve essere inferiore a 5 mg/g.

Parte 2: Determinazione del grado di acidità dei gas per i materiali mediante misurazione del pH e della conduttività.

- I gas prodotti dopo 30 minuti di combustione vengono catturati, assorbiti in una soluzione di test e analizzati per il pH e la conduttività. Il valore del pH della soluzione di test non deve essere inferiore a 4.3.

Il valore di conducibilità della soluzione di test non deve superare i 10 μS/mm.

Per essere classificato come privo di alogeni, un cavo deve superare entrambe le parti della norma IEC 60754.

Nota: Per testare l'alogeno nei cavi si possono utilizzare altri standard simili, NFC 32-070, test C1.

IEC 61034-2 Misurazione della densità di fumo di cavi che bruciano in condizioni definite.

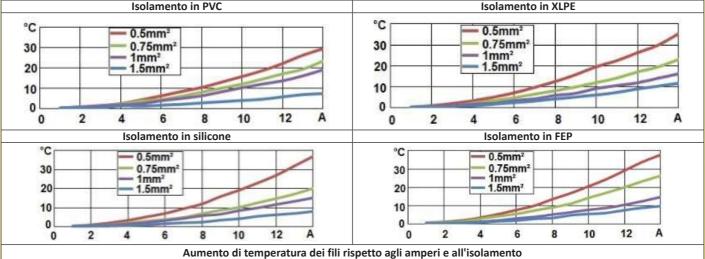
Un valore minimo di trasmissione della luce, espresso come percentuale di trasmissione della luce, viene registrato durante un incendio in un'area di 3 m³.

Il valore minimo di trasmissione luminosa raccomandato è superiore al 60%.

Nota: La norma NF C 32-073 è equivalente alla norma IEC 61034-2.

le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono dei nostri prodotti, i disegni,

H-13 Aumento di temperatura di un filo elettrico in funzione dell'intensità elettrica e della temperatura ambiente


Secondo la Commissione Elettrotecnica Internazionale, la capacità di trasporto di corrente (continua) (Ampacity in USA) "è il valore massimo di corrente elettrica che può essere trasportato in modo continuo da un conduttore, da un dispositivo o da un apparecchio, in condizioni specifiche, senza che la sua temperatura allo stato stazionario superi un determinato valore". (IEV-826-11-13). Il valore specificato è la temperatura massima stampata sugli isolamenti dei fili o specificata nelle schede tecniche. Nel cablaggio interno degli apparecchi, la temperatura che il filo raggiunge è il risultato del suo autoriscaldamento per effetto Joule, della temperatura interna dell'apparecchio in cui si trova il conduttore e del raffreddamento dovuto a eventuali correnti di convezione.

La temperatura interna massima accettabile dell'apparecchiatura finita è un parametro determinato dall'integratore, di solito in base ai requisiti delle norme.

Il calibro del filo e il tipo di isolamento scelto saranno le conseguenze di questa temperatura massima consentita.

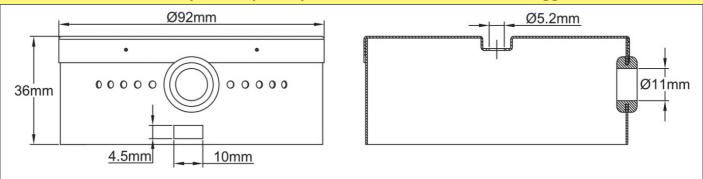
La tabella informativa che segue indica il surriscaldamento di singoli fili in funzione dell'intensità, del calibro, del tipo di isolamento e della temperatura ambiente. È da intendersi come una guida preliminare alla scelta. Quando i cavi sono cablati in fasci, è necessario applicare i coefficienti di riduzione dell'intensità. È possibile utilizzare quelli raccomandati dalla norma EN60204-1 (1998), per l'installazione di tipo E:

Coefficiente di riduzione degli ampere in base al numero di circuiti con carico						
	2	4	6	9		
0.	88	0.77	0.73	0.72		
Isolame	nto in PVC			Isolamento in XLPE		
			00			

H-14 Regole di messa a terra richieste dalle norme

Esistono numerosi obblighi normativi relativi ai dispositivi di messa a terra. Tutti mirano a garantire la sicurezza delle persone. I più importanti, estratti di essi, estratti dalla norma EN60335-1 sono:

- 1-Tutte le parti del terminale di messa a terra destinate al collegamento di conduttori esterni devono essere tali da non comportare alcun rischio di corrosione derivante dal contatto tra queste parti e il rame del conduttore di terra o qualsiasi altro metallo a contatto con queste parti. Le parti che forniscono la continuità di messa a terra devono essere di metallo con un'adeguata resistenza alla corrosione. Se queste parti sono in acciaio, devono essere dotate, nelle zone essenziali, di un rivestimento galvanico con uno spessore di almeno 5 micron. Le parti in rame o leghe di rame contenenti almeno il 58% di rame per le parti lavorate a freddo e almeno il 50% di rame per le altre parti e le parti in acciaio inossidabile contenenti almeno il 13% di cromo sono considerate sufficientemente resistenti alla corrosione.
- 2-Si misura la caduta di tensione tra il terminale di terra dell'apparecchio o il contatto di terra dell'ingresso dell'apparecchio e la parte metallica accessibile. La resistenza calcolata in base alla corrente e a guesta caduta di tensione non deve superare 0.1 Ohm.
- 3-Le viti autofilettanti e le viti a rullatura devono essere utilizzate per le connessioni elettriche solo se generano una filettatura standard di forma piena. Tuttavia, le viti autofilettanti non devono essere utilizzate se possono essere azionate dall'utente o dall'installatore.
- 4-Per ogni connessione che garantisce la continuità della messa a terra devono essere utilizzate almeno due viti, a meno che la vite non formi una filettatura di lunghezza pari ad almeno la metà del diametro della vite stessa.
- 5-Le viti e i dadi devono essere assicurati contro l'allentamento se effettuano connessioni elettriche o connessioni che forniscono continuità di messa a terra. Rondelle a molla, rondelle di sicurezza e serrature a corona come parte della testa della vite sono mezzi che possono fornire una sicurezza soddisfacente
- 6-I terminali per la connessione di conduttori equipotenziali esterni devono consentire la connessione di conduttori con aree trasversali nominali da 2.5 mm² a 6 mm² e non devono essere utilizzati per fornire continuità di messa a terra tra parti diverse dell'apparecchio. Non deve essere possibile allentare i conduttori senza l'ausilio di un attrezzo.
- 7-I collegamenti elettrici e le connessioni che forniscono la continuità di messa a terra devono essere costruiti in modo che la pressione di contatto non venga trasmessa attraverso il materiale isolante che può ritirarsi o distorcersi, a meno che non vi sia una sufficiente elasticità nelle parti metalliche per compensare qualsiasi possibile ritiro o distorsione del materiale isolante. Il materiale ceramico non è soggetto a ritiro o distorsione.


H-15 Terminali di messa a terra dei riscaldatori

Tutti i terminali di messa a terra sono in acciaio inossidabile e sono stati progettati per soddisfare le specifiche di cui sopra. In particolare, sono dotati di viti e rondelle elastiche in acciaio inossidabile e hanno una lunghezza di filettatura sufficiente. Per garantire ulteriori condizioni di sicurezza, logicamente dedotte dallo spirito della norma, il fissaggio mediante saldatura a punti ha almeno due punti distinti e separati.

Coppie di serraggio delle viti di messa a terra: M4: 1.2 N·m, M5: 2 N·m.

Tipo	20mm 11.2mm 11.2mm 20mm 10mm 20mm 10mm (N2)	7.2mm >2mm >2mm	12.5mm >2mm 12.5mm 1.2mm 10.000 10mm	25mm 15mm 11.2mm 11.2mm 12mm 12mm 26.2mm (22)	>2.5mm	M5M5
Filettatura	M4	M4	M4	M5	M5	M5
Fissaggio	2 punti di saldatura	2 punti di saldatura	2 punti di saldatura	2 punti di saldatura	3 punti di saldatura	3 punti di saldatura
Caratteristic	Può essere utilizzato per la messa a terra o per il montaggio a parete. L'altezza di 11 mm ne consente l'uso con schiuma isolante di 10 mm di spessore. Montaggio sulla parte piatta del serbatoio. Dispone di 2 fori per un posizionamento preciso su borchie sporgenti. Può essere utilizzato su tutti i diametri dei serbatoi	Può essere utilizzato per la messa a terra o per il montaggio a parete. L'altezza di 7 mm ne consente l'uso con schiuma isolante di 5 o 6 mm di spessore. Montaggio sulla parte piatta del serbatoio. Dispone di 2 fori per un posizionamento preciso su borchie sporgenti. Può essere utilizzato su tutti i diametri dei serbatoi	Può essere utilizzato per la messa a terra o per il montaggio a parete. L'altezza di 7 mm ne consente l'uso con schiuma isolante di 5 o 6 mm di spessore. Montaggio sulla parte piatta del serbatoio. Dispone di 2 fori per un posizionamento preciso su borchie sporgenti. Può essere utilizzato su tutti i diametri dei serbatoi	Può essere utilizzato per la messa a terra o per il montaggio a parete. L'altezza di 7 mm ne consente l'uso con schiuma isolante di 5 o 6 mm di spessore. Montaggio sulla parte piatta del serbatoio. Dispone di 2 fori per un posizionamento preciso su borchie sporgenti. Può essere utilizzato su tutti i diametri di serbatoio	Dispone di un gancio e di una filettatura M5 per il montaggio del coperchio di protezione meccanica in acciaio inossidabile sui terminali dell'elemento riscaldante. Deve essere montato sulla flangia con le uscite del riscaldatore tubolare. Utilizzabile su diametri 100, 125 e 150 mm.	Dispone di un gancio e di una filettatura M5 per il montaggio del coperchio di protezione meccanica in acciaio inossidabile sui terminali dell'elemento riscaldante. Deve essere montato sulla flangia con le uscite del riscaldatore tubolare. Dispone di 2 fori per un posizionamento preciso su borchie sporgenti Utilizzabile su diametri 100, 125 e 150 mm
Resistenza terminale misurata sotto la test della vite	1.3 milliohm	0.7 milliohm	1.2 milliohm	0.6 milliohm	0.4 milliohm	0.4 milliohm

H-16 Coperchio per la protezione meccanica del cablaggio

Per proteggere i terminali elettrici dagli urti, sulla flangia di uscita può essere montata a scelta una copertura in acciaio inossidabile. È fissata con una vite e un gancio nel terminale di terra. Non fornisce protezione contro le gocce d'acqua

I-Dispositivi di controllo e sicurezza

I-1 Controller elettronici di temperatura, termostati, limitatori di temperatura, dispositivi di protezione termica (taglio termico)

Questi componenti rispondono a diverse funzioni e forniscono ulteriori livelli di sicurezza.

Le loro combinazioni sono molteplici e generalmente lasciate alla scelta dell'integratore, così come i loro set-point.

La loro collocazione all'interno dei riscaldatori di questo catalogo è stata decisa, attraverso test nelle condizioni più avverse, per fornire la migliore reazione.

- Controller elettronici di temperatura:

Sono destinati a controllare la temperatura del liquido che scorre nel circuito di riscaldamento. Il punto in cui misurano la temperatura è solitamente situato vicino all'uscita del liquido dopo il riscaldamento o talvolta in un punto del circuito situato all'esterno del riscaldatore.

. Possono controllare il riscaldamento in uno, due o talvolta tre stadi di potenza.

A volte sono dotati di un allarme di alta temperatura.

Questi componenti sono generalmente non incorporati nel corpo del riscaldatore, ma di solito è prevista una tasca per il montaggio del sensore di temperatura.

- <u>Termostati a lampada e capillari regolabili</u> Sono destinati a controllare la temperatura del liquido che circola nel circuito di riscaldamento. Il punto in cui rilevano la temperatura è solitamente situato vicino all'uscita del liquido. Non hanno un'azione specifica se per qualche motivo la temperatura che controllano viene superata a causa di un guasto dell'unità. Su richiesta, questi componenti possono essere incorporati nella scatola di connessione del riscaldatore e di solito viene fornita una tasca per il montaggio della lampada.

Nelle applicazioni domestiche, come gli scaldacqua ad accumulo, il termostato viene solitamente impostato in modo che la temperatura dell'acqua all'interno del serbatoio sia di circa 60°C, per ridurre il rischio di depositi di calcare e di ustioni e, nelle applicazioni per l'acqua potabile, per evitare la crescita batteriologica (legionella). Per gli scaldacqua domestici, la temperatura massima impostata non può superare gli 80°C.

<u>Limitatori di temperatura del termostato a disco:</u> sono destinati a rilevare un'elevata temperatura del liquido nel riscaldatore

Per questo motivo sono posizionati in alto, ma dove non è probabile che ci sia una sacca d'aria. Sono montati sulla parete esterna del serbatoio. Si attivano a un valore preimpostato in fabbrica, in risposta a un aumento della temperatura della parete. Si resettano automaticamente quando la temperatura scende.

Si consiglia di proteggere questi termostati dalle infiltrazioni d'acqua con un tappo di silicone o un'incapsulatura epossidica, che impedisca anche il contatto accidentale delle mani con i terminali sotto tensione.

Nei dispositivi di questo catalogo, privilegiamo i termostati con cavi saldati ai terminali, che consentono di ottenere una buona tenuta.

Limitatori di temperatura a reset manuale con termostato a disco: sono destinati a rilevare una temperatura elevata e anomala del liquido nel riscaldatore. Pertanto, come i modelli a reset automatico, sono posizionati nella parte superiore, dove non è probabile che ci sia una sacca d'aria. Sono montati sulla parete esterna del serbatoio. Si attivano a un valore preimpostato, in risposta a un aumento anomalo della temperatura, quando il flusso diminuisce o si interrompe e quando il dispositivo di controllo della temperatura è guasto. Di solito sono unipolari, ma esistono anche bipolari e tripolari. Una volta scattato, è possibile resettare il dispositivo utilizzando un pulsante situato tra i due terminali elettrici. L'accesso a questo pulsante deve essere protetto, poiché è possibile toccare con le dita i terminali sotto tensione. Si consiglia di proteggere questi termostati dalle infiltrazioni d'acqua con un tappo in silicone o un'incapsulatura epossidica, che impediscono anche il contatto accidentale delle mani con i terminali sotto tensione. I tappi in silicone da noi sviluppati consentono il reset manuale senza la necessità di rimuoverli. Nei dispositivi di questo catalogo, privilegiamo i termostati con cavi saldati ai terminali, che consentono di ottenere una buona tenuta.

- <u>Limitatori di temperatura a lampada e a capillare:</u> hanno lo scopo di rilevare una <u>temperatura elevata e anomala del liquido nel riscaldatore</u>. Vengono quindi posizionati in alto, ma dove non è probabile che ci sia una sacca d'aria. Il loro sensore deve essere montato in una tasca. Il corpo elettrico può essere montato all'interno della scatola di connessione. Hanno solo un'azione di reset manuale. Sono Fail-Safe, il che significa che si attivano se la lampada o il capillare perde o si rompe. Si attivano a un valore preimpostato, in risposta a un aumento anomalo della temperatura, quando il flusso diminuisce o si interrompe e quando il dispositivo di controllo della temperatura è guasto.

Non sono normalmente inclusi nei riscaldatori di questo catalogo, ma possono essere installati su richiesta.

<u>Taglio termico (TCO)</u>: Hanno lo scopo di interrompere l'alimentazione dell'elemento riscaldante quando si verifica un funzionamento a secco.

Di solito sono posizionati in una tasca vicino al riscaldatore tubolare che emerge per primo dal liquido. Possono anche essere incorporati nella zona fredda del riscaldatore tubolare inguainato. Il loro tempo di risposta deve essere sufficientemente breve da consentire lo spegnimento del riscaldatore prima del rischio di incendio. Non possono essere resettati e devono essere sostituiti quando si sono attivati. Questo taglio termico è obbligatorio in alcune norme di sicurezza dei prodotti domestici, come la

EN60335-Ž-xx.

Nota sui termostati a reset manuale e sul taglio termico a fusibile

Questi dispositivi sono prescritti da norme di sicurezza, solitamente della serie EN60335-2-xx, a cui l'integratore deve fare riferimento in base alla propria applicazione. Per esempio EN 60335-2-21 (relativa agli scaldacqua ad accumulo) specifica, al §24.101: I tagli termici non devono essere auto-ripristinanti. Devono avere un meccanismo di commutazione senza scatto o essere posizionati in modo da poter essere ripristinati solo dopo la rimozione di un coperchio non rimovibile.

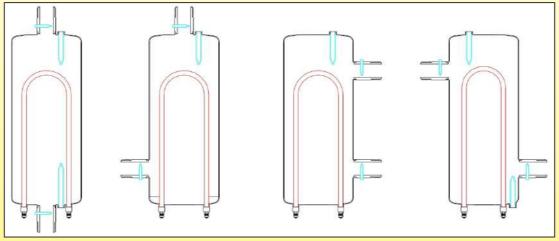
La stessa norma specifica anche al §24.102: La temperatura di funzionamento del taglio termico di uno scaldacqua chiuso deve garantire che la temperatura dell'acqua non possa superare i 99°C o che il taglio termico entri in funzione prima che la sua temperatura superi i 110°C.

I-2 Sensori di temperatura

Posizione dei sensori di temperatura

I riscaldatori di liquidi possono essere dotati di sensori di temperatura. Normalmente non sono inclusi nei riscaldatori, ma possono essere installati su richiesta.

A seconda del tipo di sensore di temperatura e del suo utilizzo, il diametro e la posizione del pozzetto termico saranno diversi. Il sensore può essere utilizzato per:


- Per rilevare la temperatura di ingresso fredda, allora è vicino al raccordo di ingresso.
- Per rilevare la temperatura di uscita calda, allora è vicino al raccordo di uscita.

Alcuni controlli elettronici misurano entrambe le temperature per calcolare la potenza istantanea misurando contemporaneamente il flusso del liquido.

Abbiamo sviluppato nippli "aggiuntivi" con pozzetti termici per sensori da montare sui riscaldatori esistenti.

Questa soluzione è tuttavia più costosa rispetto all'incorporazione dei pozzetti termici nel corpo del riscaldatore durante l'assemblaggio in produzione.

Posizioni preferite per i pozzetti termici del sensore di temperatura

In rosso riscaldatori tubolari inguainati. In blu: pozzetti termici per sonde di temperatura

Confronto tra i diversi tipi di sensori di temperatura nel normale intervallo di temperatura di funzionamento dei riscaldatori di liquidi (tra 0 e 120°C).

Caratteristiche	Termocoppia (J, K, E) RTD (Pt100, Pt1000)		Termistore (NTC)
Intercambiabilità	Buona	Eccellente	Da scarsa a discreta
Diametri usuali delle sonde	Da 2 a 6 mm	Da 4 a 6 mm	Da 4 a 6 mm
Stabilità a lungo termine	Discreta	Buona	Scarsa
Precisione	Scarsa nell'intervallo 20-100°C	Da alta a eccellente	Media
Ripetibilità	Scarsa nell'intervallo 20-100°C	Eccellente	Da discreta a buona
Semplicità di conversione del segnale di uscita in elettronico	Conversione complicata Medio		Facile
Tempo di risposta	Da medio a veloce (in base al diametro)	Medio	Da medio a veloce (a seconda del diametro)
Linearità	Discreta	Eccellente	Scarsa
Auto-riscaldamento	No	Da molto basso a basso	Alto
Effetto del piombo sulla misurazione	·		Basso (collegamento solo con 2 fili)
Costo	Basso	Basso in classe B Medio in classe B	Da basso a molto basso su richiesta di precisione e intercambiabilità

prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso. dei

I-3 Interruttori di flusso

Interruttori di flusso: Questi dispositivi sono preimpostati per aprire un contatto quando il flusso nel circuito scende al di sotto di un valore critico, ad esempio in seguito a un blocco o a un guasto della pompa di circolazione esterna.

L'apertura di questo contatto spegne gli elementi riscaldanti. Questi dispositivi sono disponibili in due forme: con una paletta che controlla un microinterruttore (sistema che richiede una guarnizione flessibile tra la paletta e l'interruttore), o con una paletta che controlla un interruttore reed tramite l'azione di un magnete (rilevamento attraverso la parete, senza bisogno di una guarnizione). Questi dispositivi sono solitamente montati su un raccordo da 3/4", con sede per la guarnizione.

Pur producendo i due tipi di flussostati, per le applicazioni nei riscaldatori, preferiamo utilizzare i flussostati magnetici, perché non hanno un meccanismo passante, evitando in questo modo la fonte più comune di perdite nelle applicazioni a media temperatura e pressione relativamente alta.

In generale, i modelli che utilizzano un interruttore reed e un magnete hanno una potenza di commutazione limitata a meno di un ampere e meno di 20 W e necessitano di un relè di potenza per azionare il circuito di alimentazione.

In alcuni modelli, il relè di potenza è incorporato nella testa del sensore e consente una commutazione fino a 16A 250V (SPDT). I flussostati non fanno parte della normale dotazione dei riscaldatori di questo catalogo, ma possono essere aggiunti utilizzando dei raccordi a T con flussostati che possono essere avvitati a monte del riscaldatore sul raccordo di ingresso. (vedi accessori alla fine di questo catalogo)

J-Isolamento termico

J-1 Isolamento termico Schiuma

Come tutti i componenti di un circuito di riscaldamento, i riscaldatori dissipano una parte della loro energia nello scambio di calore con l'ambiente. L'isolamento termico ha lo scopo di limitare le perdite che influiscono sulle prestazioni del circuito.

La maggior parte delle applicazioni dei riscaldatori di questo catalogo, soprattutto se montati in circuiti di condizionamento, comportano ulteriori vincoli per garantirne il funzionamento sicuro e la durata.

Si tratta in particolare di:

- Flessibilità che consente di avvolgere i serbatoi.
- Un basso tasso di restringimento a lungo termine a temperature fino a 80°C per evitare che l'isolamento venga strappato dal restringimento termico.
- Resistenza alla temperatura per evitare l'autoaccensione in caso di surriscaldamento durante il funzionamento a secco su dispositivi con fusibile termico (i test dimostrano che la resistenza alla temperatura continua deve essere superiore a 105°C). Devono resistere alla condensazione (acqua liquida), che si verifica quando sono installati in un circuito refrigerante di una pompa di calore reversibile che può essere freddo durante la stagione calda. (Questo richiede schiume a cellule chiuse con una porosità inferiore al 7% di acqua).
- Un contenuto di cloro attivo inferiore a 10 ppm per prevenire la corrosione sotto l'isolamento dei serbatoi in acciaio inossidabile. Esistono due tipi di schiuma flessibile a cellule chiuse utilizzata per l'isolamento dei riscaldatori che soddisfano queste specifiche. Schiuma

NBR-PVC e schiuma EPDM

Entrambe le schiume sono flessibili, a cellule chiuse e hanno una buona resistenza alla temperatura.

Esistono molti altri tipi di schiume a cellule chiuse, ma alcune non sono flessibili (fenoliche, PIR, PUR) o non hanno una sufficiente resistenza alla temperatura (neoprene, polistirene, polietilene). Alcuni hanno prestazioni termiche superiori, ma ad un costo che non è compatibile con le applicazioni di questi prodotti (schiume di siliconi, da -70 a +200°C, schiuma di Viton, da -25 a +200°C).

J-2 Confronto delle principali specifiche tecniche delle due schiume

t = somitonto dene	ornicipali specifiche tecifiche	
	NBR-PVC	Schiuma EPDM per alte temperature
Conduttività termica a 50°C secondo EN 12667 o EN ISO 8497 (W/m.k)	≤0.043	Da 0.038 a 0.042
Peso specifico (Kg/m³)	55-95 (media 75)	60-120 (media 100)
Temperatura di servizio (°C)	-40+105°C (-40°F+220°F)	Miscele ad alta temperatura: -50+125°C (-58+260°F) Miscele a temperatura standard: -50+90°C (-58+194°F)
Limiti di flessibilità alle basse temperature	Flessibile fino a 30°C (-20°F)	Flessibile fino a -55°C (-70°F).
Restringimento a temperature elevate	≤6%, 7 giorni a 105°C (220°F)	≤6%, 7 giorni a 105°C (220°F)
Classe di ritardo di fiamma della materia prima non espansa (UL94)	UL94-HF1	UL94-HBF
Resistenza al fuoco "Euro Class" su classificazione antincendio dell'edificio EN13501-1 (Direttiva europea 89/106/EEC) EN13501-1 (Direttiva europea 89/106/EEC)	Classe E=Combustibile	Classe E=Combustibile
Resistenza alla trazione (Kpa)	Resistenza alla trazione (Kpa) ≥345	
Tasso di assorbimento dell'acqua (%)	≤7%	≤5%
Resistenza all'acqua	Resistente all'umidità ed eccellente resistenza all'acqua. Non è raccomandato su riscaldatori dove l'acqua può cadere, perché l'esposizione continua all'acqua per un lungo periodo di tempo provoca l'intrusione dell'acqua nella struttura a celle chiuse e l'eventuale collasso delle celle, con conseguente degradazione della proprietà di conducibilità termica del prodotto.	Resistente all'umidità ed eccellente resistenza all'acqua. Non è raccomandato su riscaldatori dove l'acqua può cadere, perché l'esposizione continua all'acqua per un lungo periodo di tempo provoca l'intrusione dell'acqua nella struttura a celle chiuse e l'eventuale collasso delle celle, con conseguente degradazione della proprietà di conducibilità termica del prodotto.
Resistenza ai raggi UV	Resistente ai raggi UV	Più resistente ai raggi UV rispetto all'NBR.
Inizio della corrosione	Contenuto di cloruro <10ppm In caso di utilizzo su acciaio inossidabile austenitico a temperatura permanente superiore a 80°C (180°F), in condizioni di umidità, si raccomanda di proteggere l'acciaio inossidabile con un mantello anticorrosione.	Contenuto di cloruro <10ppm In caso di utilizzo su acciaio inossidabile austenitico a temperatura permanente superiore a 80°C (180°F), in condizioni di umidità, si raccomanda di proteggere l'acciaio inossidabile con un mantello anticorrosione.
Conformità ambientale	Senza CFC con zero emissioni di ozono. Conformità Rohs.	Senza CFC con zero emissioni di ozono. Conforme Rohs.

tecniche sono solo a titolo indicativo e possono causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede

J-3 Protezione superficiale delle schiume termoisolanti

Questa protezione, opzionale sui dispositivi, è adesiva e incollata sulla superficie liscia della schiuma isolante. Consiste in un tessuto di fibra di vetro dello spessore di 0.1 mm rivestito da una pellicola di alluminio di 7 micron.

Offre i seguenti vantaggi, in ordine di importanza nell'applicazione:

- Buona resistenza alla temperatura, rallentando la propagazione delle fiamme (barriera antincendio).
- Barriera all'ingresso dell'aria, che limita l'ingresso di ossigeno durante l'accensione, limitando così la velocità di infiammazione.
- Protezione meccanica contro le lacerazioni dovute al ritiro termico della schiuma.
- Protezione contro l'ingresso di acqua liquida (solo gocce).
- Protezione meccanica contro le lacerazioni durante l'installazione e la movimentazione.
- Protezione contro la penetrazione del vapore acqueo.
- Miglioramento dell'isolamento termico

Resistenza alla temperatura della fibra di vetro: 550°C

Pellicola alluminata resistente alla temperatura 120°C (permanente), 140°C (un'ora)

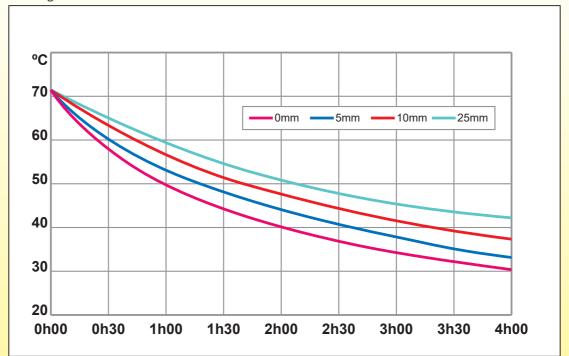
Strato adesivo temperatura massima: 150°C (permanente)

Si veda il seguente confronto del tempo di accensione della schiuma tra schiuma protetta e non protetta (condizioni di test identiche).

J-4 Rapporti di test sulle caratteristiche critiche delle schiume isolanti nelle applicazioni di riscaldamento

Per caratterizzare efficacemente il comportamento delle schiume isolanti nelle applicazioni di riscaldamento, abbiamo condotto test che hanno riguardato l'infiammabilità in base allo spessore, l'assorbimento di acqua, il ritiro dopo l'aumento della temperatura e le prestazioni isolanti.

L'aumento della massa dopo l'immersione fornisce una panoramica della percentuale di celle chiuse aperte.


Le variazioni di dimensione delineano il rischio di lacerazione dell'isolante e la sua perdita di efficienza, in condizioni di funzionamento normale e dopo un'anormale surriscaldamento

Aumento di peso in funzione dello spessore, dopo 8 giorni di immersione in acqua, a condizioni nuove.								
Spessore	Materiale	Variazione di peso dopo l'immersione (temperatura ambiente)	Variazione di peso dopo l'immersione (immerso dopo 3 ore a 65°C)	Variazione di peso dopo l'immersione (immersione dopo 3 ore a 65°C, un lato protetto da un foglio di alluminio)	Variazione di peso dopo immersione (immerso dopo 3 ore a 120°C)	Variazione di peso dopo l'immersione (immersione dopo 3 ore a 120°C, un lato protetto da un foglio di alluminio)		
5	NBR PVC	31,2%	32,6%	31,9%	31,8%	31,1%		
10	NBR PVC	33,6%	35,2%	33,8%	35,2%	33,3%		
10	EPDM	16,8%	17,3%	17,3%	22,8%	17,5%		
20	NBR PVC	34,5%	35,4%	33,9%	39,1%	36,1 %		
25	NBR PVC	37%	39,5%	38,2%	36,5%	34,8%		

Ritiro in funzione dello spessore, dopo 8 giorni di immersione in acqua, a condizioni nuove.								
Spessore	Materiale		Variazione di peso		Variazione di peso			
		dopo l'immersione		l'immersione (immerso dopo				
		(temperatura	(immerso dopo 3			3 ore a 120°C, un lato protetto da		
		ambiente)	ore a 65°C)	da un foglio di alluminio)	ore a 120°C)	un foglio di alluminio)		
5	NBR PVC	0,00%	0,00%	0,00%	0,30%	0,00%		
10	NBR PVC	0,00%	0,00%	0,00%	0,29%	0,29%		
10	EPDM	0,00%	0,00%	0,00%	0,86%	1,14%		
20	NBR PVC	0,00%	0,00%	0,00%	0,00%	0,50%		
25	NBR PVC	0,00%	0,00%	0,00%	0,49%	0,49%		

Temperatura di fumo e temperatura di accensione in funzione dello spessore dell'isolamento, con una velocità di aumento della temperatura di 10°C/minuto.									
Spessore	Materiale	Tempo trascorso dall'inizio del test fino alla fumata della schiuma isolante.	Temperatura della superficie del serbatoio all'inizio del fumo.	Temperatura massima raggiunta.	Tempo di incendio impostato.	Impostare la temperatura del fuoco.			
5	NBR PVC	22 min 32sec	305°C	320°C	Nessun incendio	N/D			
5	NBR PVC + foglio di alluminio	22 min 12sec	227°C	316°C	Nessun incendio	N/D			
10	NBR PVC	21 min 03sec	245°C	320°C	Nessun incendio	N/D			
10	NBR PVC + foglio di alluminio	22 min 28sec	220°C	316°C	Nessun incendio	N/D			
10	EPDM	25 min 15sec	240°C	318°C	Nessun incendio	N/D			
10	EPDM + Foglio di alluminio	24 min	216°C	316°C	Nessun incendio	N/D			
20	NBR PVC	24 min 39sec	233°C	317°C	Nessun incendio	N/D			
20	NBR PVC + foglio di alluminio	23 min 45sec	219°C	316°C	Nessun incendio	N/D			
25	NBR PVC	23 min 33sec	232°C	316°C	Nessun incendio	N/D			
25	NBR PVC	23 min 25sec	196°C	316°C	Nessun incendio	N/D			

Calo di temperatura rispetto al tempo di un serbatoio dia. 125 mm, a partire da 65°C, a una temperatura ambiente di 20°C, in funzione dello spessore dell'isolamento (nuovo isolamento, con e senza mantello in fibra di vetro alluminata). Le schiume NBR-PVC ed EPDM hanno gli stessi risultati.

K-Protezione contro il calcare

K-1 Regole di progettazione anti-calcare

La durezza dell'acqua

La durezza dell'acqua è definita dalla durezza totale, che corrisponde alla presenza di sali di calcio e magnesio. Più l'acqua è ricca di calcio e magnesio, più è considerata "dura". Al contrario, l'acqua con un basso contenuto di sali è definita "dolce". Pertanto, l'importanza del calcio (calcare) nell'acqua è il criterio principale che determina la durezza dell'acqua.

La durezza totale, TH è espressa in gradi, ogni grado determinato dalla formula: 1 grado (°f) = 4 mg/l di calcio o 2.43 mg/l di magnesio, o 10 mg/l di calcare Le acque sono classificate in base al loro TH:

0-6 gradi = acqua molto dolce

da 6 a 15 gradi = acqua dolce

da 15 a 30 gradi = acqua moderatamente dura

> 30 gradi = acqua dura

Depositi

Questi depositi, comunemente chiamati tartaro o calce, sono il risultato del cambiamento, sotto l'effetto del calore, dei sali di bicarbonato solubili disciolti nell'acqua, che si decompongono formando carbonato di calcio e magnesio insolubile. Più l'acqua è calda, più i depositi sono grandi.

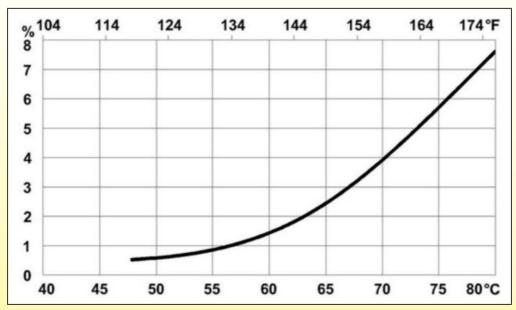
L'uso dei riscaldatori può avvenire in due modi:

- **Utilizzo in un circuito chiuso:** lo stesso liquido viene successivamente riscaldato (nel riscaldatore) e raffreddato (nell'applicazione). Questo è il caso, ad esempio, del circuito di riscaldamento centrale, in cui i riscaldatori tubolari calcificheranno pochissimo nonostante la temperatura, poiché non c'è ricambio d'acqua, il deposito si arresterà da solo quando tutto il contenuto di CaCO₃ sarà depositato. Ad esempio, un circuito di riscaldamento comprendente un metro cubo di acqua con un TH di 15° depositerà al massimo 10 grammi di carbonato di calcio.

La temperatura dell'acqua non è un parametro importante in queste applicazioni.

- Applicazione a circuito aperto

Una parte dei minerali presenti nell'acqua si agglomera quando passa sugli elementi riscaldanti. La quantità che si deposita è funzione della portata, della durezza dell'acqua e della temperatura. La durezza è un parametro locale dell'acqua, così come la percentuale relativa di calcio e magnesio, e pertanto non è possibile fornire il peso del deposito né, di conseguenza, la possibile durata di utilizzo di un riscaldatore.


La formazione di incrostazioni sugli elementi riscaldanti riduce il trasferimento di calore. Quando l'ispessimento dei depositi aumenta, lo scambio di calore del riscaldatore tubolare con l'acqua diminuisce e l'acqua si riscalda meno, ma in cambio la temperatura interna del riscaldatore tubolare aumenta perché non può dissipare il suo calore. La conseguenza è che la temperatura interna del filo riscaldante al nichel-cromo incorporato nella magnesia raggiunge i 900°C e le reazioni chimiche tra questo filo e le particelle di ferro all'interno della magnesia ne causano la rapida distruzione.

In queste applicazioni, la temperatura dell'acqua è un parametro critico per la durata del prodotto.

Nota: l'uso di anodi di magnesio o di elettrodi di titanio a corrente imposta non ha alcun effetto sull'incrostazione.

Contattateci www.ultimheat.com Cat23-2-2-69

K-2 Deposito di calcare rispetto alla temperatura

Questa figura mostra la percentuale stimata di sali minerali diluiti nell'acqua in circolazione che si depositano a contatto con le pareti calde del riscaldatore tubolare.

Si può notare che l'intervallo di temperatura 60-65°C è l'area critica in cui i depositi iniziano ad aumentare.

L-Protezione dalla corrosione

L-1 Regole di progettazione contro la corrosione dei metalli

Corrosione degli acciai inossidabili.

La corrosione/ossidazione è il deterioramento delle proprietà essenziali di un metallo, dovuto alle reazioni con l'ambiente circostante. Nell'uso più comune del termine, ciò significa una perdita di un elettrone del metallo che reagisce con l'acqua o con una reazione elettrolitica.

Nonostante il nome, gli acciai inossidabili possono essere soggetti a corrosione. I produttori di materie prime forniscono per questo schede tecniche con le condizioni di temperatura d'uso, nonché i liquidi e le concentrazioni che le leghe possono sopportare senza corrosione. Tuttavia, queste informazioni tecniche si riferiscono a materie prime che non sono state sottoposte a trattamenti meccanici o termici e non sono state contaminate dal processo di trasformazione.

Durante il processo di produzione, le materie prime "inossidabili" subiscono una serie di trasformazioni. Sono i cambiamenti che si verificano durante queste trasformazioni a essere i più critici e ad avviare le condizioni di corrosione, piuttosto che il grado del materiale utilizzato.

La corrosione è un fenomeno lento, raramente osservabile prima della consegna del prodotto, di solito non rilevabile durante il ricevimento del prodotto e durante l'assemblaggio da parte dell'integratore, ma può causare danni considerevoli a breve e medio termine a causa di perdite dopo l'installazione.

L'acciaio inossidabile è una famiglia di acciai legati contenenti almeno il 10.5% di cromo. Il cromo, a contatto con l'ossigeno, forma una barriera naturale di ossido di cromo chiamata "film passivo". Con uno spessore di soli micron, questa pellicola invisibile e inerte si autoripara. Per garantire che l'acciaio inossidabile sia in grado di "auto-ripararsi", è necessario che il prodotto finito sia sottoposto a un processo al termine del processo di fabbricazione. Il processo si chiama "passivazione".

Esistono nove diversi tipi di corrosione che possono avere un impatto sull'acciaio inossidabile.

1. Corrosione interstiziale

Si tratta di un problema comune per gli acciai inossidabili utilizzati in applicazioni in acqua di mare, a causa del basso PH dell'acqua salata. I cloruri intaccano la superficie passivata, dove l'acqua salata a basso PH attacca il metallo esposto. In mancanza di ossigeno per la ripassivazione, la corrosione continua. Questa corrosione è più frequente nelle fessure con limitazioni di ossigeno, come gli interstizi tra 2 parti.

2. Pitting (vedi anche Corrosione galvanica).

L'acciaio inossidabile la cui passivazione è stata penetrata in un piccolo punto diventa anodico, mentre la parte passivata rimane catodica, causando una corrosione di tipo pit. Può essere innescata da particelle di acciaio o ferro incastrate nella superficie durante il processo di fabbricazione.

3. Corrosione intergranulare.

A temperature elevate, come quelle che si riscontrano durante la saldatura TIG, il carbonio forma carburo di cromo, privando le aree adiacenti del cromo di cui hanno bisogno per proteggersi dalla corrosione.

4. Corrosione da stress da cloruri.

I cloruri sono probabilmente il più grande nemico dell'acciaio inossidabile. Nella maggior parte degli ambienti, i PPM sono così bassi che gli effetti sull'acciaio inossidabile sono minimi. In ambienti estremi, come le piscine, gli effetti possono essere estremi e potenzialmente pericolosi.

5. Corrosione galvanica

Se si mettono 2 metalli dissimili in un elettrolita si produce una corrente elettrica. La corrente scorre dal metallo anodico verso il metallo catodico e rimuove lentamente il materiale dal metallo anodico. L'acqua di mare è un buon elettrolita e quindi la corrosione galvanica è un problema comune in questo ambiente.

6. Corrosione sotto l'isolamento.

Sebbene non sia a diretto contatto con il liquido che scorre nel riscaldatore, la sua parete esterna è solitamente ricoperta da un isolante termico. Questo isolante termico può essere la causa della corrosione, a causa della penetrazione dell'acqua di condensa e del rilascio di cloro dall'isolante. Questo tipo di corrosione è possibile sul riscaldatore in condizioni di utilizzo normale, in particolare nelle applicazioni di condizionamento dell'aria che prevedono periodi di refrigerazione.

7. Lisciviazione selettiva

I fluidi rimuovono il metallo durante un processo di de-ionizzazione o de-mineralizzazione. Questo tipo di corrosione non si verifica mai nelle applicazioni standard dei riscaldatori di questo catalogo.

8. Corrosione ed erosione

Questa corrosione si verifica quando la velocità di un fluido abrasivo rimuove la passivazione da un acciaio inossidabile. Gli acciai inossidabili possono operare ad alte velocità di flusso, fino a circa 40 m/s, senza che il film superficiale si rompa. Per evitare la formazione di depositi, è preferibile una velocità di flusso superiore a 1 m/s nelle acque grezze e superiore a 0.6 m/s nelle acque più pulite.

Questo tipo di corrosione non si verifica mai nelle applicazioni standard dei riscaldatori di questo catalogo.

9. Corrosione generale

Questo tipo di corrosione si verifica quando accade una rottura generale del film passivo. L'intera superficie del metallo presenta

Contattateci www.ultimheat.com Cat23-2-2-71

causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza

centrati (come

un aspetto uniforme simile a una spugna. Questa corrosione è il risultato del contatto con alogeni altamente concentrati (come fluoro, cloro, bromo). Questi penetrano nel film passivo dell'acciaio inossidabile e permettono la corrosione. Questo tipo di corrosione non si verifica mai nelle applicazioni standard dei riscaldatori di questo catalogo.

Il nostro processo produttivo è stato completamente analizzato e sviluppato per essere certi che qualsiasi fase della produzione e dell'assemblaggio non modifichi le caratteristiche di resistenza alla corrosione della materia prima.

Inoltre, dopo l'assemblaggio, immediatamente prima del cablaggio elettrico, tutti i riscaldatori vengono passivati, risciacquati con acqua deionizzata e asciugati per rimuovere qualsiasi traccia di contaminazione invisibile che potrebbe essere esistita.

L-2 Corrosione intergranulare

La corrosione intergranulare è una forma di corrosione in cui i confini dei cristalliti del materiale sono più suscettibili alla corrosione rispetto al loro interno.

La corrosione intergranulare dell'acciaio inossidabile è il risultato della precipitazione del carburo di cromo (Cr23C6, Cr7C3) che si verifica dopo un certo trattamento termico (600~700C), come avviene durante la saldatura TIG o la brasatura ad alta temperatura. Questi carburi, il cui contenuto di cromo è molto elevato (95%), impoveriscono localmente la matrice di cromo. Il suo contenuto può scendere sotto il livello del 10.5%, che è il minimo per sviluppare lo strato passivo dell'acciaio inossidabile. Pertanto, nelle aree circostanti il carburo, l'acciaio inossidabile perde la capacità di essere resistente alla corrosione. Queste aree, solitamente situate a qualche millimetro da ciascun lato del cordone di saldatura TIG (ma che possono coprire l'intero riscaldatore dei serbatoi brasati ad alta temperatura nei forni a vuoto), diventano più sensibili alla corrosione e vengono definite "sensibilizzate". Tuttavia, la precipitazione di carburi di cromo si verifica nelle leghe austenitiche con una percentuale di carbonio superiore allo 0.03%.

La corrosione intergranulare, tuttavia, può svilupparsi solo in un secondo momento in queste aree sensibilizzate quando l'ambiente contiene cloro, cloruri e simili.

Per limitare questa corrosione sono state sviluppate le leghe 304L (X2CrNi18-9 o 1.4307) e 316L (X2CrNiMo17-12-2 o 1.4404). (La L finale significa "Low Carbone"). Altre leghe hanno una resistenza migliore, migliorata dall'aggiunta di alcune percentuali di Titanio, come la 316Ti

(X6 CrNiMoTi17-12-2 o 1.4571).

essere modificate senza causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche

L-3 Contaminazione da ossidi di ferro durante il processo

Durante il processo di produzione, particelle di ferro o acciaio provenienti da utensili, stampi o attrezzature possono incorporarsi nell'acciaio inossidabile. Se non vengono evitate durante la produzione o non vengono rimosse, queste particelle possono corrodersi, produrre macchie di ruggine e/o contaminare il riscaldatore e dare inizio alla corrosione per vaiolatura. La passivazione rimuove il ferro libero dal riscaldatore.

L-4 Corrosione da cloro e cloruri

Questa corrosione si verifica soprattutto quando il liquido contiene cloro e cloruri. Chiamata corrosione da stress da cloruro, si verifica nei punti in cui il metallo è stato sottoposto a calore o a stress meccanico. La suscettibilità a questa corrosione viene solitamente valutata in base al contenuto di cloruri, al pH e alla temperatura.

I riscaldatori di questo catalogo presentano numerose saldature per i raccordi e gli elementi riscaldanti. Vengono utilizzati principalmente per riscaldare l'acqua a una temperatura compresa tra 50 e 80°C, che può contenere additivi sconosciuti come il glicole, ma anche fanghi con particelle di acciaio, rame, plastica e zinco. L'acqua utilizzata è generalmente quella del rubinetto. Nell'acqua di rubinetto si devono considerare le seguenti sostanze chimiche, per la loro azione corrosiva: Cloro libero e cloruro Il cloro libero è l'ingrediente più corrosivo.

Il cloro libero è la quantità di cloro presente nell'acqua sotto forma di gas disciolto (C12), acido ipocloroso (HOCI) e/o ione ipoclorito (OCI-) non combinato con l'ammoniaca o altri composti presenti nell'acqua.

Quando l'ipoclorito di sodio (NaOCl, detto anche candeggina) viene aggiunto all'acqua (acqua di pozzo, acqua potabile, acqua di piscina, ecc.) per uccidere i batteri, genera:

- Cloro gassoso (C1₂), un ossidante molto potente (motivo per cui uccide i batteri) e quindi alti livelli di cloro possono accelerare la corrosione da cloruro degli acciai inossidabili. Ma il cloro esce rapidamente dalla soluzione.
- Acido ipocloroso (HOCI), in proporzioni diverse, a seconda del pH della soluzione.
- Ioni ipoclorito (OCI-), in proporzioni diverse, a seconda del pH della soluzione. È aggressivo per gli acciai inossidabili, agendo in modo simile al cloro gassoso umido.

L'acqua di rubinetto ha solitamente un livello di cloro libero compreso tra 0.2 e 1 mg/litro. (da 2 a 10 ppm).

<u>Cloruro</u> e specialmente ioni Cl-, presenti nei sali di sodio (NaCl), potassio (KCI) e calcio (CaCl2). La vaiolatura e la corrosione interstiziale richiedono la presenza di cloruri e, per un dato livello di cloruri, gli acciai inossidabili sono tanto più resistenti quanto più sono altamente legati.

La corrosione interstiziale tende a verificarsi a livelli di cloruri e temperature inferiori rispetto alla vaiolatura. Tale attacco è solitamente localizzato in aree interstiziali o contaminate da ferro o ossidi di ferro.

Non è stato proposto alcun valore guida per la salute per il cloruro nell'acqua potabile.

L'acqua del rubinetto ha solitamente un livello di cloruro inferiore a 50 mg/litro (50 ppm), ma in alcune zone può raggiungere i 250 mg/litro (a questo livello, l'acqua del rubinetto è "salata").

L-5 Gradi di acciaio inossidabile raccomandati rispetto alla percentuale di cloro libero e cloruri

Livello di cloro libero	Livello di cloruro (ppm), Temperatura ambiente, PH>6	Livello di cloruro (ppm), in condizioni severe, ad esempio fessure molto strette, pH basso, temperature elevate (80-100°C), basse portate o rischio di concentrazione locale di livelli di cloruro più elevati a causa di depositi o zone morte.	Grado di acciaio inossidabile consigliato (a basso tenore di carbonio per le parti saldate)
<2ppm		<50 ppm	304L, 316L
		<250 ppm	304L, 316L
<5ppm			316L
	<100ppm		304L
	<200ppm		304L, 316L
	200-1000ppm		316L

Nota: La resistenza delle Leghe 321 alla corrosione per vaiolatura e interstiziale in presenza di cloruro è simile a quella degli acciai inossidabili 304 o 304L.

L'acciaio inossidabile 316L è un materiale standard utilizzato per la generazione di ozono e per il trattamento dei flussi di acqua ozonizzata.

Contattateci www.ultimheat.com Cat23-2-2-73

L-6 Regole di progettazione contro la corrosione galvanica, chiamata anche corrosione bimetallica

I riscaldatori in linea possono essere soggetti a un fenomeno particolare che ne riduce la durata, fino alla perforazione dell'alloggiamento. Si tratta della corrosione galvanica.

La corrosione galvanica (Bimetallica) è un fenomeno elettrochimico che si verifica quando metalli dissimili sono in contatto in presenza di un elettrolita (ad es. acqua, acqua di mare). Questo fenomeno provoca un'ulteriore corrosione che può verificarsi con altri fenomeni e con metalli non accoppiati, e la sua progressione è di solito molto più rapida.

Tra i due metalli compare una differenza di potenziale che dipende sia dal metallo sia dalla soluzione. Due metalli o due leghe diverse a contatto con lo stesso mezzo assumono generalmente due potenziali diversi. Se i due metalli sono collegati elettricamente, la loro differenza di potenziale genera reazioni elettrochimiche e un flusso di corrente elettrica.

Il metallo più negativo (meno nobile) è polarizzato positivamente e quello più positivo è polarizzato negativamente. Nella maggior parte dei casi, questa configurazione comporta un aumento della velocità di corrosione del metallo più corrodibile (più negativo) e una diminuzione della velocità di corrosione del metallo meno corrodibile (più positivo).

Nei riscaldatori in linea, a causa del rischio di gocce d'acqua e di condensa, è obbligatorio evitare questo potenziale elettrico in quanto comporta una corrosione molto rapida.

I seguenti metalli devono essere assolutamente evitati a contatto con l'acciaio inossidabile, l'Incolloy o il Titanio in condizioni di umidità: Magnesio, Alluminio, Cadmio e Zinco (compresi i metalli rivestiti di zinco).

Condizioni di giunzione necessarie per la comparsa di una coppia di corrosione galvanica

La corrosione galvanica è funzione di diversi fattori che devono essere attentamente valutati quando si valuta la probabilità di avere una corrosione galvanica.

I requisiti simultanei per la corrosione bimetallica sono i seguenti:

- Un elettrolita che faccia da ponte tra i due metalli.
- Un contatto elettrico tra i due metalli.
- Una differenza di potenziale tra i metalli che consenta una corrente galvanica significativa.
- Una reazione catodica sostenuta sul più nobile dei due metalli.

NB: Se i metalli sono asciutti, la corrosione bimetallica (galvanica) non può verificarsi.

Elettrolito

Anche la conducibilità dell'elettrolita influisce sul grado di attacco.

Quando la conducibilità dell'elettrolita è bassa, la corrosione si localizza nelle zone di contatto tra i due metalli.

Quando la conduttività dell'elettrolita aumenta, la superficie corrosa aumenta.

Contatto elettrico tra i metalli

Se il contatto elettrico viene impedito tra i due metalli interponendo un isolante (ossido di alluminio, fosfatazione, vernice, olio, ecc.), la corrente non passa e non si verifica la corrosione.

Differenza di potenziale elettrico tra i metalli

Più alto è il valore, maggiore è la forza elettromotrice del fenomeno. Una differenza di centinaia di millivolt può provocare la corrosione galvanica, mentre una differenza di 200-300mV non costituisce un problema.

I potenziali di corrosione galvanica di vari metalli e leghe sono elencati in una tabella che fornisce i valori di potenziale elettrico del metallo e sono solitamente misurati rispetto all'elettrodo di calomelano standard (S.C.E.) I metalli "anodici", come il magnesio, lo zinco e l'alluminio, si corrodono più facilmente di quelli "catodici" (titanio, argento, oro).

La corrosione è proporzionale alla differenza di potenziale tra due metalli.

I valori da considerare sono i potenziali dei metalli e delle leghe che formano la coppia rispetto al mezzo in questione. Questi potenziali sono valori sperimentali e devono essere distinti dai potenziali standard delle tabelle termodinamiche.

I potenziali sperimentali sono fortemente influenzati da parametri quali temperatura, agitazione e ventilazione. Inoltre, alcuni metalli possono assumere due potenziali diversi nelle stesse condizioni ambientali a seconda che siano attivi o passivi (è il caso degli acciai inossidabili a contatto con l'acqua di mare, per esempio).

Queste considerazioni dimostrano che può essere difficile prevedere le tendenze senza la necessità di sperimentare, poiché molti parametri possono invertire la polarità di alcune coppie galvaniche.

Rapporto tra le aree dei due metalli: il caso peggiore è quello in cui una grande superficie catodica (il materiale più positivo) è collegata elettricamente a una piccola superficie anodica (il metallo più negativo). La velocità di corrosione del metallo più negativo può essere moltiplicata per 100 o per 1000. Ad esempio, l'assemblaggio di una coppa di alluminio termostatata a disco (dia. 16 mm) su un serbatoio di acciaio inossidabile causerà una rapida corrosione della coppa se sono soddisfatte le condizioni di giunzione necessarie.

Resistenza alla corrosione dei metalli nobili - Indipendentemente dal suo potenziale, la resistenza alla corrosione del metallo più nobile influenza in modo significativo il comportamento delle coppie bimetalliche. Se il metallo più nobile si corrode, i suoi prodotti di corrosione possono, per moto, accelerare la corrosione del metallo più corroso. Se la coppia di metalli nobili non si corrode (Oro, Platino), non presenta rischi di corrosione galvanica, indipendentemente dal metallo che verrà associato.

Introduzione tecnica

L-7 Alo

causa del continuo miglioramento dei nostri prodotti, i disegni,

L-7 Alcuni casi particolari di coppie elettrochimiche bimetalliche, compreso l'acciaio inossidabile

Rischi di corrosione con acciaio zincato e acciaio inossidabile a contatto

L'acciaio zincato a contatto con l'acciaio inossidabile non è normalmente considerato un grave rischio di corrosione, tranne che in ambienti marini.

Tuttavia, nei riscaldatori di questo catalogo, tutte le parti in acciaio zincato e in acciaio sono state rimosse e le viti, le rondelle e i connettori dei riscaldatori tubolari sono in acciaio inossidabile.

Corrosione galvanica tra acciaio inossidabile e alluminio

I potenziali di corrosione degli acciai inossidabili sono "catodici" e si trovano nella zona "nobile". I potenziali di corrosione dell'alluminio sono "anodici" e si trovano nell'area "non nobile", con una grande differenza di potenziale. Ciò significa che l'acciaio inossidabile non subirà corrosione galvanica se posto a contatto con l'alluminio, mentre l'alluminio si corroderà.

Sebbene l'alluminio sia anodico rispetto all'acciaio inossidabile, a seconda delle condizioni locali, possono essere accettabili ampie superfici relative di alluminio rispetto all'acciaio inossidabile.

Gli elementi di fissaggio in acciaio inossidabile nelle lastre o nelle lamiere di alluminio sono normalmente considerati sicuri, mentre i rivetti o i bulloni in alluminio che tengono insieme parti in acciaio inossidabile sono una combinazione poco saggia, in quanto esiste un rischio pratico di corrosione.

Anche in assenza di isolamento tra i metalli, il rischio di corrosione dovrebbe essere minimo, in condizioni climatiche continentali. Al contrario, in un ambiente marino, è stata osservata una grave corrosione da vaiolatura localizzata sui gradini in alluminio quando sono stati utilizzati bulloni in acciaio inossidabile non isolati per fissare i gradini in posizione.

Sulla stessa scala, tuttavia, i bulloni con rondelle isolanti non hanno mostrato alcuna vaiolatura sull'alluminio circostante.

Metodi meccanici per ridurre la corrosione galvanica tra alluminio e acciaio inossidabile

- Isolare i due materiali per mezzo di un materiale isolante, come la plastica, laddove possibile.
- Evitare aree relativamente piccole del metallo meno nobile (alluminio) e grandi aree del metallo più nobile (acciaio inossidabile).
- Lo stesso metallo o un metallo più nobile (catodico, numero più alto nella tabella) dovrebbe essere utilizzato per piccoli elementi di fissaggio e bulloni.
- Evitare le fessure nell'acciaio inossidabile: In presenza di fessure, gli acciai inossidabili possono presentare potenziali meno nobili a causa dell'esaurimento dell'ossigeno all'interno della fessura. Pertanto, l'accoppiamento di un'area di alluminio relativamente grande con una piccola area interstiziale di un pezzo in acciaio inossidabile può provocare un rapido attacco del materiale all'interno dell'interstizio, con conseguente corrosione dell'acciaio inossidabile.
- Escludere l'elettrolito dall'area circostante la giunzione bimetallica, ad esempio mediante verniciatura. Verniciare entrambi i metalli, se possibile: se impraticabile, verniciare il metallo più nobile.
- Sigillare: assicurarsi che le superfici di fissaggio siano a tenuta stagna.
- Applicare paste o composti inibitori della corrosione sotto le teste delle viti o dei bulloni inseriti in superfici metalliche dissimili, indipendentemente dal fatto che gli elementi di fissaggio siano stati precedentemente placcati o meno.
- In alcuni casi, può essere possibile applicare un mantello organico alle superfici di fissaggio prima dell'assemblaggio. Questo vale per i giunti che non devono essere elettricamente conduttivi.
- Se possibile o se non interferisce con l'uso proposto per l'assemblaggio, il giunto esterno deve essere rivestito esternamente con un sistema di verniciatura efficace.
- Evitare giunti filettati per materiali molto distanti tra loro nella serie galvanica.

Contattateci www.ultimheat.com Cat23-2-2-75

L-8 Coppie elettrochimiche di vari metalli

Coppie elettrochimiche di vari metalli, in una soluzione salina al 2%.

Non si nota una corrosione significativa quando il valore della coppia galvanica è superiore a 300mV.

	Pt (Platinum/ Platine)	Au (Gold/ Or)	Ti (Titanium / Titane)	AISI 316L (passive/passif)	Ag (Silver/ Argent)	Ni (Nickel/ Nickel)	Ni Cu 30 (Monel 400)	NiCr15Fe8 (Incone1600)	Cu55 Zn23 Ni22 (Arcap)	Cu (Copper/ Cuivre)	Al10 Sn66 Pb34	Cu Zn34 (Brass/ Laiton)	Cu88 Sn12 (Bronze)	Sn (Tin/ Etain)	Pb (Lead / Plomb)	AICu Mg1 (Duralumin)	Mild steel / Acier doux)	Al Si 10Mg (Alpax H)	A199. 5 (Aluminum)	Hard steel/ Acier dur	Al Mg5 (Duralinox)	ADC12 (Aluminum alloy)	Cd (Cadmium/ Cadmium)	Fe (Steel / Fer)	Cr (Chromium/ Chrome)	Al Mg Si0. 7 (Almasilium)	Sn75 Zn25	Zn (Zinc/ Zinc)	Al PVD (Physical vapor deposition)	Mg (Magnesium)
Pt (Platinum/ Platine)	0	130	250	250	350	430	430	430	450	570	600	650	770	800	840	940	1000	1065	1090	1095	1100	1100	1100	1105	1200	1200	1350	1400	1400	1900
Au (Gold/ Or)	130	0	110	110	220	300	300	300	320	410	470	520	610	670	710	810	870	935	960	965	970	970	970	975	1070	1070	1230	1270	1270	1820
Ti (Titanium/Titane)	250	110	0	0	110	180	180	180	200	320	350	400	520	550	590	690	750	815	840	845	850	850	850	855	950	950	1100	1150	1150	1700
AISI 316L(passive/passif)	250	110	0	0	110	180	180	180	200	320	350	400	520	550	590	690	750	815	840	845	850	850	850	855	950	950	1100	1150	1150	1700
Ag (Silver/ Argent)	350	220	100	100	0	80	80	80	100	220	250	300	420	450	490	590	650	715	740	745	750	750	750	755	850	850	1010	1050	1050	1600
Ni (Nickel/ Nickel)	430	300	180	180	80	0	0	0	20	110	170	220	340	370	410	510	570	635	660	665	670	670	670	675	770	770	930	970	970	1520
Ni Cu 30 (Monel 400)	430	300	180	180	80	0	0	0	20	110	170	220	340	370	410	510	570	635	660	665	670	670	670	675	770	770	930	970	970	1520
NiCr15 Fe8 (Inconel 600)	430	300	180	180	80	0	0	0	20	110	170	220	340	370	410	510	570	635	660	665	670	670	670	675	770	770	930	970	970	1520
Cu55 Zn23 Ni22 (Arcap)	450	320	200	200	100	20	20	20	0	120	150	200	320	350	380	490	550	615	640	645	650	650	650	655	750	750	910	950	950	1500
Cu (Copper/ Cuivre)	570	440	320	320	220	140	140	140	120	0	30	80	200	230	270	370	430	495	520	525	530	530	530	535	630	630	780	830	830	1380
Al10 Sn66 Pb34	600	470	350	350	250	170	170	170	150	30	0	50	170	200	210	310	400	465	490	495	500	500	500	505	600	600	760	800	800	1350
Cu Zn34 (Brass/ Laiton)	650	520	400	400	300	220	220	220	200	80	50	0	120	150	190	290	350	415	410	445	450	450	450	455	550	550	710	750	750	1300
Cu88 Sn12 (Bronze)	770	640	520	520	420	340	340	340	320	200	170	120	0	30	70	170	230	295	320	325	330	330	330	335	430	430	590	630	630	1180
Sn (Tin/ Etain)	800	670	550	550	450	370	370	370	350	230	200	150	30	0	40	140	200	265	290	295	300	300	300	305	400	400	560	600	600	1150
Pb (Lead / Plomb)	840	710	590	590	490	410	410	410	380	270	240	190	70	40	0	100	160	225	250	255	260	260	260	265	360	360	520	660	560	1110
Al Cu Mg1 (Duralumin)	940	810	690	690	590	510	510	510	490	370	340	290	170	140	100	0	60	125	150	155	160	160	160	165	260	260	420	560	560	1010
Mild steel / Acier doux)	1000	870	750	750	650	570	570	570	550	430	400	350	230	200	150	60	0	65	90	95	100	100	100	105	200	200	360	400	400	950
Al Si 10Mg (Alpax H)	1065	935	815	815	715	635	635	635	615	495	465	415	295	265	225	125	65	0	25	30	35	35	35	40	135	135	295	355	355	885
Al 99. 5 (Aluminum)	1090	960	840	840	740	660	660	660	640	520	490	440	320	290	250	150	90	25	0	5	10	10	10	15	110	110	270	310	310	860
Hard steel/ Acier dur	1095	965	845	845	745	665	665	665	645	525	495	445	325	295	255	155	95	30	5	0	5	5	5	10	105	105	265	305	305	855
Al Mg5 (Duralinox)	1100	970	850	850	750	670	670	670	650	530	500	450	330	300	260	160	100	35	10	5	0	0	0	5	100	100	260	300	300	850
ADC12 (Aluminum alloy)	1100	970	850	850	750	670	670	670	650	530	500	450	330	300	260	160	100	35	10	5	0	0	0	5	100	100	260	300	300	850
Cd (Cadmium/ Cadmium	1100	970	850	850	750	670	670	670	650	530	500	450	330	300	260	160	100	35	10	5	0	0	0	5	100	100	260	300	300	850
Fe (Steel / Fer)	1105	975	855	855	755	675	675	675	655	535	505	455	335	305	265	165	105	40	15	10	5	5	5	0	95	95	255	295	295	845
Cr (Chromium/ Chrome)	1200	1070	950	950	850	770	770	770	750	630	600	550	430	400	380	260	200	135	110	105	100	100	100	95	0	0	160	200	200	750
Al Mg Si0. 7 (Almasilium)	1200	1070	950	950	850	770	<u>770</u>	<u>770</u>	750	630	600	550	430	400	380	260	200	135	110	105	100	100	100	95	0	0	160	200	200	750
Sn75 Zn25	1350	1230	1110	1110	1010	930	930	930	910	790	760	710	590	650	520	420	360	295	270	265	260	260	260	225	160	160	0	40	40	590
Zn (Zinc/ Zinc)	1400	1270	1150	1150	1050	970	970	970	950	830	800	750	630	600	560	460	400	335	310	305	300	300	300	295	200	200	40	0	0	550
Zn Al4 (Zamak3/Zamac 3)	1400	1270	1150	1150	1050	970	970	970	950	830	800	750	630	600	560	460	400	335	310	305	300	300	300	295	200	200	40	0	0	550
Al PVD (Physical vapor deposition)	1400	1270	1150	1150	1050	970	970	970	950	830	800	750	630	600	560	460	400	335	310	305	300	300	300	295	200	200	40	0	0	550
Mg (Magnesium)	1900	1820	1700	1700	1600	1600	1600	1600	1520	1500	1390	1300	1180	1150	1110	1010	950	885	860	850	850	850	850	845	845		590	560	560	0
				0-3	300	mV					301	-500	m۷	'				501·	-800	mV					> 8	800 r	nV]		

L-9 Corrosione sotto isolamento

La corrosione sotto l'isolamento è una corrosione localizzata che si verifica all'interfaccia tra una superficie metallica e l'isolamento su tale superficie. Può essere una forma particolarmente grave di corrosione che si verifica sotto l'isolamento e nelle interfacce nascoste. Se l'isolamento deve essere applicato su acciaio legato austenitico con temperatura di esercizio compresa tra 80°C e 200°C, o in atmosfere particolarmente aggressive come quelle che si possono trovare nelle zone marine o costiere, si raccomanda di applicare una barriera anticorrosione prima dell'applicazione dell'isolamento, in modo da prevenire la corrosione da stress. Si raccomanda di proteggere esternamente l'isolante con un'adeguata copertura impermeabile per evitare l'ingresso di acqua. La presenza di umidità può portare all'accumulo di cloruri solubili che contribuiscono alla corrosione.

La maggior parte degli isolanti termici non provoca corrosione a causa della loro composizione, ma alcune schiume sì. Ciò può accadere con schiume che hanno ingredienti clorurati nella loro composizione.

Le schiume isolanti devono avere un contenuto di cloruro inferiore a 10 ppm. Se l'acqua o l'umidità penetrano attraverso l'esterno dell'isolamento, il materiale isolante può agire come mezzo di raccolta e creare un ambiente contenente cloruri, umidità e ossigeno, trasmigrando e concentrando i cloruri sulle superfici calde dell'acciaio inossidabile. Se l'umidità non è presente, il sale di cloruro non può migrare e la cricca da tensocorrosione dovuta all'isolamento contaminato da cloruri non può verificarsi. Vedere: ASTM C692-05 Metodo di test standard per la valutazione dell'influenza degli isolamenti termici sulla tendenza alla criccatura da tensocorrosione esterna dell'acciaio inossidabile austenitico.

Introduzione tecnica

L-10 Fattori aggravanti la corrosione

Errori di progettazione

- 1/ Dettagli di progettazione in cui possono accumularsi cloruri o particelle di ferro, ad esempio gli interstizi.
- 2/ Aree di deposito dei fanghi
- 3/ Zone morte d'aria: Interfaccia tra liquido e aria, a causa del degassamento, l'aria è intrappolata all'interno dei raccordi di uscita dei tubi o sulla parte superiore del serbatoio.
- 4/ Finitura superficiale: La rugosità superficiale Ra non deve superare Ra 0.5 micron.
- Se Ra è pari a >1 micron, si noteranno scanalature profonde in cui gli ioni di cloro possono accumularsi e distruggere il film passivo, dando così inizio alla corrosione.
- 5/ Design di formatura che può creare crepe nella materia prima.
- 6/ Contatto tra materiali che può innescare la corrosione elettrolitica
- 7/ Materiale isolante che può innescare la corrosione sotto l'isolamento a causa della migrazione del suo contenuto di cloruro.
- 8/ Sabbiatura in luoghi in cui l'acciaio inossidabile è a contatto con l'acqua.

Processo di produzione errato

- 9/ Saldatura: gas di protezione non appropriato che provoca ossidi.
- 10/ Giunti di saldatura in cui possono accumularsi cloruri, ad esempio radici di saldature a penetrazione parziale.
- 11/ Effetto dei bordi: bave sui bordi e contaminazione dei bordi da parte degli utensili da taglio possono innescare la corrosione.
- 12/ Contaminazione da ferro durante il processo di produzione e assemblaggio.
- 13/ Passivazione errata o mancante: La composizione della soluzione di passivazione, la concentrazione, la temperatura e il tempo sono parametri critici che influenzano la resistenza alla corrosione.
- 14/ Pulizia o sgrassatura errata. I pezzi non correttamente sgrassati non saranno correttamente passivati.
- 15/ Mani sporche o bagnate durante la produzione: Le impronte delle dita possono innescare la corrosione a causa del contenuto di sale nel sudore.
- 16/ Crepe non rilevate causate dalla formazione del metallo a causa di disallineamenti degli stampi.

Errori di installazione

- 17/ Interfaccia tra liquido e aria: l'aria è intrappolata all'interno a causa di una posizione di installazione errata.
- 18/ Interfaccia tra liquido e aria: l'aria intrappolata all'interno perché lo spurgo dell'aria è difettoso o non abbastanza sensibile
- 19/ Graffi freschi: hanno lo stesso effetto della finitura superficiale.

indicativo e possono causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in gueste

L-11 Sintesi delle regole attuate durante le operazioni di produzione dei riscaldatori per prevenire l'insorgere della corrosione

	prevenire i iliso	rgere della corrosione	
Operazioni di lavorazione	Potenziale risultato sulla resistenza alla corrosione	Tecniche attuate per evitare i rischi	Metodo di controllo, mediante campionamento statistico o controllo permanente della produzione.
Lavorazione	 Un trattamento termico inadeguato durante la produzione di barre e sbozzi tubolari può causare corrosione intergranulare. Le operazioni di lavorazione con utensili in acciaio possono causare l'inclusione di particelle di ferro nei pezzi. Divieto di utilizzare leghe inossidabili con zolfo. (L'aggiunta di zolfo agli acciai inossidabili per migliorare la lavorabilità è comune). I solfuri possono fungere da siti di innesco della corrosione. 	- Lavorazione con utensili in carburo o ceramica - Riduzione della temperatura di lavorazione mediante l'uso di refrigeranti Stoccaggio in contenitori di plastica coperti	- Materiali grezzi Analisi metallografica.
Stoccaggio delle lastre di materie prime	La contaminazione della materia prima a causa dell'attrito con l'acciaio o il ferro provoca depositi di particelle di ferro che causano la corrosione per vaiolatura.	 - Acquisto di lastre protette da film plastico. - Controllo delle condizioni di trasporto. - Stoccaggio e movimentazione su pallet di plastica. 	- Analisi della contaminazione da ossidi di ferro. - Controllo della composizione delle materie prime.
Stampaggio	La contaminazione della materia prima a causa dell'attrito con l'acciaio o il ferro provoca depositi di particelle di ferro che causano la corrosione per vaiolatura.	Stampaggio di parti protette da film plastico. Stoccaggio e manipolazione in contenitori di plastica	- Analisi della contaminazione da ossidi di ferro.
Imbutitura e laminazione	La contaminazione della materia prima a causa dell'attrito con l'acciaio o il ferro provoca depositi di particelle di ferro che causano la corrosione per vaiolatura.	Utensili e stampi in acciaio inossidabile austenitico Parti protette da film plastico. Stoccaggio e movimentazione in contenitori di plastica o carrelli in acciaio inossidabile.	- Analisi della contaminazione da ossidi di ferro.
Saldatura TIG	La contaminazione per attrito su parti in acciaio o in ferro provoca depositi di particelle di ferro che danno inizio alla corrosione per vaiolatura. Il surriscaldamento della saldatura modifica la struttura del metallo e lo ossida. La velocità di saldatura e i tempi di raffreddamento sono parametri critici per prevenire la cristallizzazione all'origine della corrosione intercristallina.	Protezione mediante gas riducente su entrambi i lati della saldatura. Controllo della velocità di saldatura e di raffreddamento. Limitazione dell'aumento di temperatura. Utilizzo di utensili e matrici in acciaio inossidabile austenitico o cromato.	Analisi della contaminazione da ossidi di ferro. Analisi metallografica. Controllo della temperatura e del tempo di raffreddamento. Controllo della resistenza alla corrosione delle saldature secondo ASTM.
Stiramento dei riscaldatori tubolari	La forte pressione di stiramento causa l'inclusione profonda di particelle metalliche dai rulli.	- Rulli di stiramento al carburo	- Analisi della contaminazione da ossidi di ferro.
Stoccaggio sulle linee di produzione e confezionamento.	I flussi d'aria causano la deposizione di polveri metalliche provenienti dall'esterno, dalla struttura dell'edificio o dalle aree dell'impianto in cui vengono prodotte parti in acciaio. Queste polveri possono innescare la corrosione per vaiolatura.	- Protezione dai depositi di polvere Pulizia giornaliera delle postazioni di lavoro e del pavimento.	Analisi della contaminazione da ossidi di ferro. Controllo permanente del tasso di polvere nelle officine di produzione e del loro tasso di particelle ferriche.
Operazioni di assemblaggio e lavorazione manuale.	- L'attrito su tavoli metallici o i colpi con utensili manuali causano l'inclusione di particelle di ferro.	 Linee di assemblaggio dedicate, utilizzate solo per l'assemblaggio di parti in acciaio inossidabile. Tavoli di lavoro e utensili in acciaio inossidabile o plastica. 	- Analisi della contaminazione da ossidi di ferro.
Test di tenuta dell'acqua	L'attrito su tavoli metallici o i colpi con utensili manuali causano l'inclusione di particelle di ferro. L'uso incontrollato di liquidi può portare ossidi o particelle metalliche.	 Linee di assemblaggio dedicate, utilizzate solo per l'assemblaggio di parti in acciaio inossidabile. Tavoli di lavoro e utensili in acciaio inossidabile o in plastica. Utilizzo di acqua pura o di liquidi controllati. 	- Analisi della contaminazione da ossidi di ferro
Sabbiatura (questa operazione viene effettuata solo su specifica richiesta del cliente)	Gli abrasivi vengono solitamente macinati da ruote metalliche. Nell'abrasivo si possono trovare particelle derivanti dall'usura delle mole, talvolta in percentuale elevata.	 Divieto di utilizzo di abrasivi macinati. Verifica della contaminazione della sabbia da ossidi ferrici. Sabbiatura preferenziale con microsfere di vetro. 	Vagliatura della sabbia abrasiva con trappola magnetica. Verifica della contaminazione delle polveri non abrasive da ossidi di ferro.
Imballaggio	L'attrito sui tavoli metallici causa l'inclusione di particelle di ferro. Rischio di contaminazione da polvere in caso di stoccaggio prolungato	Tavoli di imballaggio coperti con pannelli di polietilene. Imballaggio individuale con film plastico	- Controllo della contaminazione da ferro dei tavoli con spray chimico
Passivazione	La passivazione perde la sua efficacia nei seguenti casi: - La soluzione di passivazione può essere contaminata. - la temperatura del bagno può essere errata - il tempo di passivazione può essere troppo lungo o troppo breve - Il risciacquo può essere dimenticato	- Solo i prodotti in acciaio inossidabile al 100% vengono passivati. - Nel bagno di passivazione sono vietate le cariche di saldatura, rame, acciaio, ottone e stagno. - pH, temperatura e concentrazione sono costantemente monitorati da dispositivi di misurazione automatici con allarme visivo e sonoro. - La velocità di lavorazione è automatizzata. - Risciacquo automatizzato	- Controllo chimico della passivazione

Introduzione tecnica

L-12 Protezione mediante anodi sacrificali di magnesio

Per combattere la corrosione, in particolare quella che colpisce i serbatoi e le tubazioni in acciaio e ferro, è stata sviluppata una tecnica che utilizza coppie galvaniche per proteggere dalla corrosione.

Un anodo, generalmente in magnesio, viene incorporato nel circuito idraulico in modo che la reazione elettrolitica, che in presenza di acqua si manifesta spontaneamente tra il magnesio e le pareti in acciaio del serbatoio, avvenga tra il metallo più "nobile" (acciaio) e quello meno "nobile" (magnesio).

Sotto l'effetto di questa corrente, l'anodo si dissolve lentamente, il magnesio viene rilasciato e si deposita sulle parti metalliche non protette del serbatoio. Questo anodo è detto "sacrificale", poiché si dissolve gradualmente. Questa tecnica è ampiamente utilizzata negli scaldacqua ad accumulo, che per ragioni di economia sono realizzati in acciaio, ricoperti da uno strato di smalto anticorrosivo. Questo smalto è naturalmente leggermente poroso e le frequenti variazioni di temperatura, unite a coefficienti di espansione leggermente diversi tra lo smalto e il metallo, provocano microfratture dello strato protettivo, in cui il metallo si corrode, causando infine perdite. Queste soluzioni aumentano la durata di vita, che tuttavia è limitata a quella dell'anodo. Questi elettrodi non sono necessari nei riscaldatori all'interno di serbatoi in acciaio inossidabile, perché la corrosione non si verifica, se sono fabbricati secondo le regole dell'arte.

L-13 Protezione mediante elettrodo a corrente imposta

Per evitare il problema dell'usura dell'anodo di magnesio, quest'ultimo può essere sostituito da un elettrodo di titanio. La reazione elettrochimica è quindi prodotta da un alimentatore che richiede una corrente elettrica di pochi volt per provocare il deposito di alcuni minerali naturalmente presenti nell'acqua, in particolare il magnesio, sulle pareti esposte del recipiente e quindi proteggerlo. Questa protezione offre benefici che durano nel tempo, ma per essere efficace richiede un'acqua ricca di magnesio, un'adeguata messa a terra del serbatoio e un'alimentazione permanente.

La sua efficacia viene meno se manca uno dei tre elementi.

Per ovviare al rischio associato alla composizione dell'acqua, sono stati sviluppati elettrodi ibridi che combinano l'anodo di magnesio con l'elettrodo di titanio, ma prolungano solo la durata dell'elettrodo di magnesio.

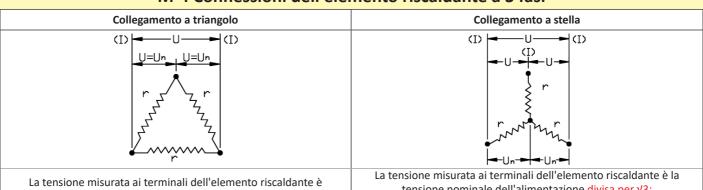

Questi elettrodi non sono necessari nei riscaldatori all'interno di serbatoi in acciaio inossidabile, perché la corrosione non si verifica, se sono fabbricati secondo le regole dell'arte.

solo a titolo indicativo e possono causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste

Contattateci www.ultimheat.com Cat23-2-2-79

M-Formula principale

M-1 Legge di Ohm



M-2 Tabella della potenza in watt di un riscaldatore elettrico rispetto alla resistenza e alla tensione tra i terminali

Resistenza ohmica (ohm)	Potenza a 12 V	Potenza a 24 V	Potenza a 48 V	Potenza a 115 V	Potenza a 220V	Potenza a 230V	Potenza a 240V	Potenza a 380V	Potenza a 400V
1000	0,1	0,6	2,3	13	48	53	58	144	160
500	0,3	1,2	4,6	26	97	106	115	289	320
265	0,5	2,2	8,7	50	183	200	217	545	600
212	0,7	2,7	10,9	62	228	250	272	681	755
106	1,4	5,4	21,7	125	457	500	543	1362	1500
100	1,4	5,8	23	132	484	529	576	1444	1600
90	1,6	6,4	26	147	538	588	640	1604	1778
70,5	2,0	8,2	33	188	687	750	817	2048	2270
52,9	2,7	10,9	44	250	915	1000	1089	2730	3000
50	2,9	11,5	46	265	968	1058	1152	2888	3200
42,3	3,4	13,6	54	313	1144	1250	1362	3414	3783
40	3,6	14,4	58	331	1210	1323	1440	3610	4000
35,3	4,1	16,3	65	375	1371	1500	1632	4091	4533
30	4,8	19,2	77	441	1613	1763	1920	4813	5333
26,4	5,5	21,8	87	500	1833	2000	2182	5470	6000
21,15	6,8	27,2	109	625	2288	2500	2723	6827	7565
20	7,2	29	115	661	2420	2645	2880	7220	8000
17,6	8,2	33	131	750	2750	3000	3273	8205	9091
13	11,1	44	177	1000	3723	4000	4431	11108	12308
10,55	13,6	55	218	1254	4588	5000	5460	13687	15166
5	29	115	461	2645	9680	10580	11520	28880	32000
2	72	288	1152	6613	24200	26450	28800	72200	80000
1	144	576	2304	13225	48400	52900	57600	144400	160000

Cablaggio in parallelo Cablaggio seriale r(P) r(P) r(P) r(P) r(P) R(P) R(P) Elemento di Elemento Quantità di Quantità di Resistenza totale Potenza totale riscaldamento Resistenza Potenza totale riscaldante elementi elementi (n) (P) Densità in watt Densità in Watt (R) totale (R) (P) riscaldanti (n) (w/cm^2) (w/cm²) 2 P = p/22 R = r/2P = 2pUnchanged R = 2rDivided by 4 P = 3p R = r/33 P = p/3Divided by 9 3 Unchanged R = 3rP = np Unchanged P = p/nDivided by n² R = r/nn R = Xr

M-4 Connessioni dell'elemento riscaldante a 3 fasi

uguale alla tensione nominale dell'alimentazione: U=Un

tensione nominale dell'alimentazione divisa per v3: U=1.737 (se U=400V, Un=230V)

							0-1.73	7 (SE U-400V, U	11-230 0)	
Tension alimenta (U)	zione	230V, 3 fasi	230V, 3 fasi	400V, 3 fasi	400V, 3 fasi	Tensione di alimentazione (U)	230V, 3 fasi	230V, 3 fasi	400V, 3 fasi	400V, 3 fasi
Tension nomina dell'elem riscalda (Un)	ale iento inte	230V	400V	230V	400V	Tensione nominale dell'elemento riscaldante (Un)	230V	400V	230V	400V
Densità watt (W/cm	t	Nessuna variazione della densità di watt.	La densità di watt viene divisa per 3.	La densità di watt viene moltiplicata per 6.	Nessuna variazione della densità in watt.	Densità di watt (W/cm²)	La densità di watt viene divisa per 3.	La densità di watt divisa per 9.	Nessuna variazione della densità in watt.	La densità di watt viene divisa per 3.
Potenza t (P)	otale	La potenza totale è 3 volte la potenza nominale di un elemento riscaldante (P=3p).	La potenza totale viene divisa per 9. È 1/3 della potenza nominale di un elemento riscaldante (P=p/3).	La potenza totale è pari a 9 volte la potenza nominale di un elemento riscaldante (P=9p).	La potenza totale è 3 volte la potenza terminale di un elemento riscaldante (P=3p).	Potenza totale (P)	La potenza totale è 1/3 della potenza totale possibile: è la stessa di un elemento riscaldante (P=p)	La potenza totale è 1/9 della potenza totale possibile. 1/3 della potenza nominale di un elemento riscaldante (P= p/3)	La potenza totale è 3 volte la potenza nominale di un elemento riscaldante (P=3p)	La potenza totale è 1/3 della potenza totale possibile. è uguale a quella di un elemento riscaldante (P=p)
Comme	enti	Soluzione senza alcun problema tecnico.	Questa configurazione può essere utilizzata come fase di bassa potenza in un sistema di collegamento a stella/triangolo.	Non utilizzare mai Pericolo di incendio!	Questa è la configurazione più comune	Commenti	Non consigliata	Non consigliata	È il collegamento più standard, che consente di utilizzare gli stessi riscaldatori con collegamento a stella a 400 V o a triangolo a 230 V senza modificare la potenza.	

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

M-5 Calcolo della potenza necessaria per riscaldare i liquidi

Utilizzo di un riscaldatore a circolazione Utilizzo di un riscaldatore a circolazione per Uso di riscaldatori a immersione per aumentare la temperatura del liquido non per aumentare la temperatura del liquido aumentare la temperatura di un flusso di circolante nei serbatoi circolante in un circuito chiuso nei serbatoi liquido in un unico passaggio $P=V\times\rho\times cp$ (Tf-Ti) /3600×t $P=V\times\rho\times cp$ (Tf-Ti) /3600×t $P = Q \times p \times Cp$ (Ts-Te) /3600 P= Potenza necessaria in kW P= Potenza necessaria in kW P= Potenza necessaria in kW V= Volume del liquido in m³ V= Volume del liquido in m³ Q= Flusso di liquido in m³/ora ρ=Gravità specifica del liquido in kg/m³ ρ=Gravità specifica del liquido in kg/m³ ρ= Peso specifico del liquido in kg/m³ cp= Calore specifico in kJ/kg°C cp= Calore specifico in kJ/kg°C cp= Calore specifico in kJ/kg °C Tf= Temperatura finale richiesta in °C Tf= Temperatura finale richiesta in °C Ts= Temperatura di uscita in °C, Ti= Temperatura iniziale in °C Ti= Temperatura iniziale in °C Te= Temperatura di ingresso in °C t= Tempo di riscaldamento richiesto in ore t= Tempo di riscaldamento richiesto in ore

M-6 Aumento della temperatura dell'acqua in °C per ora/volume/potenza (Calcolo teorico, perdite termiche non dedotte)

Alimentazione	Flusso d	i circolazior		za di tempei cita	atura tra in		iscaldatore di accumulo, aumento della temperatura dell'acqua						
(kW)	0.5L/min	1L/min	2L/min	3L/min	5L/min	10L/min	100L	200L	300L	500L	1000L		
	ΔT °C	ΔT °C	ΔT °C	ΔT °C	ΔT °C	ΔT °C	ΔT °C/h	ΔT °C/h	ΔT °C/h	ΔT °C/h	ΔT °C/h		
1	29	14	7,2	4,8	2,9	1,4	5,2	2,6	1,7	1,0	0,5		
1,5	43	21	11	7,2	4,3	2,1	7,7	3,9	2,6	1,5	0,8		
2	57	29	14	10	5,7	2,9	10	5,2	3,4	2,1	1,0		
2,5	72	36	18	12	7,2	3,6	13	6,4	4,3	2,6	1,3		
3	86	43	21	14	8,6	4,3	15	7,7	5,2	3,1	1,5		
3,5	100	50	25	17	10	5,0	18	9,0	6,0	3,6	1,8		
4	115	57	29	19	11	5,7	21	10	6,9	4,1	2,1		
4,5	129	64	32	21	13	6,4	23	12	7,7	4,6	2,3		
5	143	72	36	24	14	7,2	26	13	8,6	5,2	2,6		
5,5	158	79	39	26	16	7,9	28	14	9,5	5,7	2,8		
6	172	86	43	29	17	8,6	31	15	10	6,2	3,1		
6,5	186	93	47	31	19	9,3	34	17	11	6,7	3,4		
7	200	100	50	33	20	10	36	18	1?	7,2	3,6		
8	229	115	57	38	23	11	41	21	14	8,2	4,1		
9	258	129	64	43	26	13	46	23	15	9 _r 3	4,6		
10	286	143	72	48	29	14	52	26	17	10	5,2		
15	430	215	107	72	43	21	77	39	26	15	7,7		
20	573	286	143	95	57	29	103	52	34	21	10		
30	859	430	215	143	86	43	155	77	52	31	15		
40	1146	573	286	191	115	57	206	103	69	41	21		

preavviso A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

M7-Confronto dell'aumento di temperatura in °C/ora rispetto alla potenza per alcuni liquidi e solidi

Potenza		Volume	di calce	struzzo			Volum	e di olio	d'oliva		Volume di acqua					
(KW)	0.1m³	0.2m³	0.3m³	0.5m³	1m³	100L	200L	300L	500L	1000L	100L	200L	300L	500L	1000L	
1	11,7	5,9	3,9	2,3	1,2	11,8	5,9	3,9	2,4	1,2	5,2	2,6	1,7	1,0	0,5	
1,5	17,6	8,8	5,9	3,5	1,8	17,7	8,9	5,9	3,5	1,8	7,7	3,9	2,6	1,5	0,8	
2	23	11,7	7,8	4,7	2,3	24	11,8	7,9	4,7	2,4	10	5,2	3,4	2,1	1,0	
2,5	29	14,7	9,8	5,9	2,9	30	14,8	9,8	5,9	3,0	13	6,4	4,3	2,6	1,3	
3	35	17,6	11,7	7,0	3,5	35	17,7	11,8	7,1	3,5	15	7,7	5,2	3,1	1,5	
3,5	41	20,5	13,7	8,2	4,1	41	20,7	13,8	8,3	4,1	18	9,0	6,0	3,6	1,8	
4	47	23	15,7	9,4	4,7	47	24	15,7	9,4	4,7	21	10	6,9	4,1	2,1	
4,5	53	26	17,6	10,6	5,3	53	27	17,7	10,6	5,3	23	12	7,7	4,6	2,3	
5	59	29	19,6	11,7	5,9	59	30	19,7	11,8	5,9	26	13	8,6	5,2	2,6	
5,5	65	32	21,5	12,9	6,5	65	32	21,6	13,0	6,5	28	14	9,5	5,7	2,8	
6	70	35	23	14,1	7,0	71	35	24	14,2	7,1	31	15	10	6,2	3,1	
6,5	76	38	25	15,3	7,6	77	38	26	15,3	7,7	34	17	11	6,7	3,4	
7	82	41	27	16,4	8,2	83	41	28	16,5	8,3	36	18	12	7,2	3,6	
8	94	47	31	18,8	9,4	94	47	31	18,9	9,4	41	21	14	8,2	4,1	
9	106	53	35	21,1	10,6	106	53	35	21,2	10,6	46	23	15	9,3	4,6	
10	117	59	39	23	11,7	118	59	39	24	11,8	52	26	17	10	5,2	
15	176	88	59	35	17,6	177	89	59	35	17,7	77	39	26	15	7,7	
20	235	117	78	47	23	**	118	79	47	24	**	52	34	21	10	
30	352	176	117	70	35	**	177	118	71	35	**	77	52	31	15	
40	470	235	157	94	47	**	236	157	94	47	**	**	69	41	21	

^{**} Nota: il calcolo non è valido al di sopra della temperatura di ebollizione.

M-8 Calore specifico (cp, in kJ/kg°C) e peso specifico (ρ, in Kg/m³) dei principali liquidi

<u>Calore specifico:</u> Il calore specifico è la quantità di calore necessaria per modificare una massa* unitaria di una sostanza di un grado di temperatura.

(*Quando si usa il volume, ρ deve essere convertito in massa con la tabella del peso specifico).

	Calore specifico (cp) Britannico/								
Liquidi	SI	Britannico/ USA	Metrico	SI	cifico (ρ) Britannico/ USA				
	kJ/(kg°C)	Btu/(Ib°F)	kcal(kg°C)	kg/m³	Lb/ft³				
Acido acetico	2,18	0,51	0,51	1048	65,4				
Alcool, etile, 95%, @0°C (32°F) (etanolo)	2,3	0,55	0,55	807	50,4				
Ammoniaca, @40°C (104°F)	4,86	1,16	1,16	767	47,9				
Fluido di trasferimento del calore Dowtherm @50°C (120°F)	1,55	0,37	0,37	944	58,9				
Glicole etilenico 25% in volume in acqua, @70°C(160°F)	3,93	0,94	0,94	1018	63,5				
Glicole etilenico 30% in volume in acqua, @70°C(160°F)	3,87	0,925	0,925	1025	64,0				
Glicole etilenico 40% in volume in acqua, @70°C(160°F)	3,73	0,89	0,89	1038	64,8				
Glicole etilenico/acqua, 50% in volume in acqua @70°C (160°F)	3,56	0,85	0,85	1050	65,5				
Glicole etilenico, puro, @70°C (160°F)	2,36	0,56	0,56	1120	69,9				
Freon R-12 saturo @50°C (120°F)	1,02	0,244	0,244	1310	81,8				
Olio combustibile min	1,67	0,4	0,4	809	50,5				
Olio combustibile max	2,09	0,5	0,5	944	58,9				
Benzina	2,22	0,53	0,53	673	42,0				
Glicerina	2,43	0,58	0,58	1261	78,7				
Cherosene	2,01	0,48	0,48	809	50,5				
Latte	3,93	0,94	0,94	1028	64,2				
Olio vegetale	1,67	0,4	0,4	921	57,5				
Olio d'oliva	1,97	0,47	0,47	929	58,0				
Paraffina	2,13	0,51	0,51	897	56,0				
Olio di soia	1,97	0,47	0,47	920	57,4				
Acqua, fresca @20°C	4,19	1	1	1000	62,4				
Acqua, mare @20°C	3,93	0,94	0,94	1028	64,2				

Contattateci www.ultimheat.com Cat23-2-2-83

0

M-9 Calore specifico (cp, in kJ/kg°C) e peso specifico (ρ, in Kg/m³) dei principali solidi.

		Calore specifico (cp)		Peso spe	ecifico (ρ)
Solidi	SI	Britannico/americano	Metrico	SI	Britannico/ americano
	kJ/(kg°C)	Btu/(Ib°F)	kcal(kg°C)	kg/m³	Lb/ft³
Alluminio (@0°C)	0.87	0.21	0.21	2700	168
Rame	0.39	0.09	0.09	8920	556
Ottone	0.38	0.09	0.09	7300~8800	455~549
Acciaio	0.46	0.11	0.11	7500~8100	468~506
Calcestruzzo	0.75~0.96	0.18~0.23	0.18~0.23	2200~2500	137~156

M-10 Flusso d'acqua per i normali riscaldatori di liquido

	Doccia domestica, piccola	Doccia domestica, grande	Pompa di circolazione per riscaldamento centrale, bassa velocità	- Pompa di circolazione per riscaldamento centrale a media velocità - Pompa di circolazione piccola per riscaldamento spa	- Pompa di circolazione per riscaldamento centrale a media velocità - Pompa di circolazione grande per riscaldamento spa	Pompa principale spa, bassa velocità	Pompa principale spa, alta velocità	Pompa per piscina o spa	
L/min.	2	5	10	20	50	100	250	500	
galloni/min	0.53	1.32	2.64	5.28	13.2	26.4	65.4	132	

Tabella dei riferimenti

Contattateci www.ultimheat.com Cat23-2-3-1

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Tabella dei riferimenti

E	Elenco dei riferimenti		Elenco dei riferimenti] [Elenco dei riferimenti	Elenco dei riferimenti
9	9SU107A615E00000	9	9SU331G675G11000		9SU531E690Y11E00	4RSFMD055C0B8051
9	9SU107A630E00000	9	9SU331G638G11000		9SU531E645Y11E00	4RSFMD065D0B8051
ç	9SU107E615E00E00	9	9SU331A675G11000		9SU531F690Y11000	4RSFMD075D0B8051
ç	9SU107E630E00E00		9SU331A638G11000		9SU531F645Y11000	4RSFMD08SD0B80S1
S	9SU113A615E00000		9SU331B675G11E00		9SU531G690Y11000	4RSFMD090D0B8051
9	9SU113A630E00000		9SU331B638G11E00		9SU531G645Y11000	49SFMD040CAB8051
ç	9SU113E615E00E00		9SU331C675G11E00		9SUE31C6C9G11E00	49SFMD055DAB8051
ç	9SU113E615E00E00		9SU331C638G11E00		9SUE31C665G11E00	49SFMD060DAB8051
9	SU231A675G00000		9SU331E675G11E00		9SUE31D6C9G11000	49SFMD070DAB8051
9	SU231A638G00000		9SU331E638G11E00		9SUE31D665G11000	49SFMD075DAB8051
9	SU231B675G00E00		9SU331F675G11000		9SUE31E6C9G11E00	49SFMD095DAB8051
9	SU231B638G00E00		9SU331F638G11000		9SUE31E665G11E00	8L0070105AO61001
9	SU231C675G00E00	9	9SU331G675G11000		9SUE31F6C9G11000	8L0080105AA61001
9	SU231C638G00E00	9	9SU331G638G11000		9SUE31F665G11000	8L0080105AO61001
9	SU231E675G00E00	9	9SU431A675G11000		9SUE31G6C9G11000	8L0080105AA61001
9	SU231E638G00E00	9	9SU431A638G11000		9SUE31G665G11000	8L0090115AO61001
9	9SU231F675G00000		9SU431B675G11E00		9SU631C6R0Z22E00	8L0090115AA61001
9	9SU231F638G00000		9SU431B638G11E00		9SU631C690Z22E00	8L0100120AO61001
9	SU231G675G00000		9SU431C675G11E00		9SU631D6R0Z22000	8L0100120AA61001
9	SU231G638G00000	1	9SU431C638G11E00		9SU631D690Z22000	8L0110135AO61001
9	SUB31A696G00000	1	9SU431E675G11E00		9SU631E6R0Z22E00	8L0110135AA61001
9	SUB31A648G00000		9SU431E638G11E00		9SU631E690Z22E00	8L0120145AO61001
9	SUB31B696G00E00		9SU431F675G11000		9SU631F6R0Z22000	8L0120145AO61001
9	SUB31B648G00E00		9SU431F638G11000		9SU631F690Z22000	8L0130155AO61001
9	SUB31C696G00E00	9	9SU431G675G11000		9SU631G6R0Z22000	8L0130155AA61001
9	SUB31C648G00E00	9	9SU431G638G11000		9SU631G690Z22000	8L0150175AO61001
9	SUB31E696G00E00	9	9SUD31A6B4G11000		9SU731C6R0Z22E00	8L0150175AA61001
9	SUB31E648G00E00	9	9SUD31A657G11000		9SU731C690Z22E00	820060090AI61001
9	SUB31F696G00000	9	9SUD31B6B4G11E00		9SU731D6R0Z22000	820060090AA61001
9	SUB31F648G00000	9	9SUD31B657G11E00		9SU731D690Z22000	820070100Al61001
9	SUB31G696G00000	Ġ	9SUD31C6B4G11E00		9SU731E6R0Z22E00	820080110Al61001
9	SUB31G648G00000	(9SUD31C657G11E00		9SU731E690Z22E00	820090120Al61001
9	SU331A675G11000	(9SUD31E6B4G11E00		9SU731F6R0Z22000	820110140Al61001
9	SU331A638G11000		9SUD31E657G11E00		9SU731F690Z22000	820130160Al61001
9	SU331B675G11E00	9	9SUD31F6B4G11000		9SU731G6R0Z22000	820150180Al61001
9	SU331B638G11E00	9	9SUD31F657G11000		9SU731G690Z22000	5MA3SPF070F18500
9	SU331C675G11E00	9	9SUD31G6B4G11000		9SU831C690Y22E00	5MA3SPF077F18500
9	SU331C638G11E00	9	9SUD31G657G11000		9SU831C645Y22E00	5MA3SPF084F18500
9	9SU331E675G11E00		9SU531C690Y11E00		9SU831D690Y22E00	5MA3SPF091F18500
9	9SU331E638G11E00		9SU531C645Y11E00		9SU831D645Y22E00	5MA3SPF096F18500
9	9SU331F675G11000		9SU531D690Y11000		9SU831F690Y22000	5MA3SPF106F18500
9	SU331F638G11000	!	9SU531D645Y11000		9SU831F690Y22000	5MA3SPF109F18500

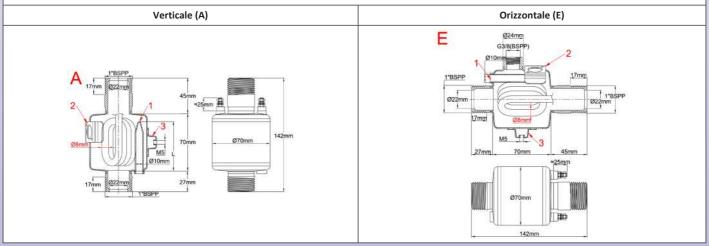
Elenco dei riferimenti 5MA3SPF121F18500 5MA3SPF129F18500 5MA3SPF139F18500 5MA3SPF152F18500 5MA3SPF165F18500 5MA3SPF169F18500 5MA3SPF182F18500 5MA3SPF188F18500 5MA3SPF216F18500 5MA3SPF227F18500 5MA3SPF240F18500 R1X671034G35N200 R1X671234G35N200 R1X671034G35N200 R1X672650G35N200 R1X671550G35N200 R1X671034G35N200 R1X672650G35N200 R1X671550G35N200 RAX671034G31N00E RAX671234G31N00E RAX671034G31N00E RAX67265QG31N00E RAX67155OG31N00E RAX671034G31N00E RAX672650G31N00E RAX671550G31N00E 6R1T34208510S 6R1T34208510T 6R1T34268514S 6R1T34268514T 6R1P3419S 6R1P3419T 69SUPAM38N 69SUPAA38B 69SUSS0338B 69SUSL7040S 69SUSL8570S 69SUSL7040V 69SUSL8570V 69SUFRG18300B100 69SUFRG18300L100 69SUFRG18300V100

> Contattateci Cat23-2-3-3 www.ultimheat.com

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Contattateci www.ultimheat.com Cat23-2-4-1


A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

2

Diametro 70 mm, lunghezza 70 mm, raccordi da 1".

Diametro (mm)	Lunghezza serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenza massima	Tipo
70	70	Verticale o orizzontale	1	1500w (10W/cm²) 3000w (20W/cm²)	9SU107

Riscaldatore tubolare dia.: 8 mm

e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

A causa del continuo miglioramento

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 1.

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale) Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)

Connessione di ingresso: Cilindrico 1" BSPP maschio Diametro di uscita: Cilindrico 1" BSPP maschio Ingresso e uscita dalla linea centrale: coassiale

Filettatura di sfiato dell'aria: 3/8 BSPP (sul modello orizzontale)

Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 60 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di

termostato alla fine del catalogo).

Staffe di montaggio a parete (3): una staffa M5. Può essere utilizzata anche per la messa a terra.

Accessori: vedere la fine di questo catalogo

Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina in 316L

Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro dell'elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza
9SU107A615E00000	А	10	8	1	230V	1.5 kW
9SU107A630E00000	А	20	8	1	230V	3kW
9SU107E615E00E00	Е	10	8	1	230V	1.5 kW
9SU107E630E00E00	Е	20	8	1	230V	3kW

I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.

Contattateci www.ultimheat.com Cat23-2-4-3

Diametro 70 mm, lunghezza 130 mm, raccordi da 1".

Diametro (mm)	Lunghezza serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenza massima	Tipo
70	130	Verticale o orizzontale	1	1500w (5W/cm²) 3000w (10W/cm²)	9SU113

Verticale (A) Orizzontale (E) E Other Orizzontale (E) IBSPP I'mm Orizzontale (E) Orizzontale (E) Orizzontale (E) Orizzontale (E) Orizzontale (E)

Riscaldatore tubolare dia.: 8 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 1.

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale) Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)

Connessione di ingresso: Cilindrico 1" BSPP maschio Diametro di uscita: Cilindrico 1" BSPP maschio Ingresso e uscita dalla linea centrale: coassiale

Filettatura di sfiato dell'aria: 3/8 BSPP (sul modello orizzontale)

Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 120 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura.

Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

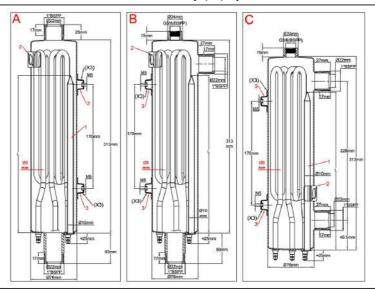
Staffe di montaggio a parete (3): una staffa M5. Può essere utilizzata anche per la messa a terra.

Accessori: vedere la fine di questo catalogo

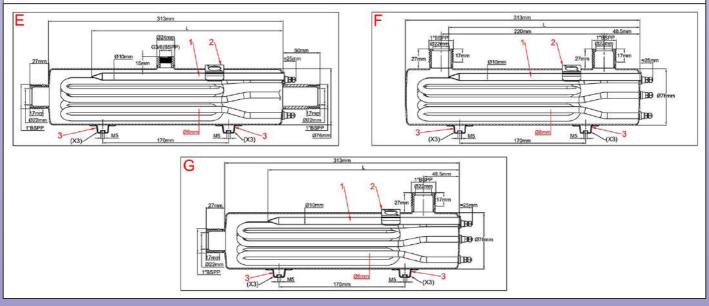
Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina 316L

Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza
(kW)	А	10	8	1	230V	1.5kW
9SU113A630E00000	А	20	8	1	230V	3kW
9SU113E615E00E00	E	10	8	1	230V	1.5kW
9SU113E630E00E00	Е	20	8	1	230V	3kW

I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.


del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso

Diametro 76 mm, lunghezza 313 mm, riscaldatori tubolari a forcella, raccordi da 1".


Diametro (mm)	Lunghezza del serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenza massima	Tipo
76	313	Verticale o orizzontale	3	3.75kW (3×1.25kW, 5W/cm²) 7.5kW (3×2.5kW, 10W/cm²)	9SU231

Verticale (A, B, C)

Orizzontale (E, F, G)

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Contattateci www.ultimheat.com Cat23-2-4-5

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso

Riscaldatori di liquido standard

Diametro del riscaldatore: 8 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale)
Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)

Connessione di ingresso: Cilindrico 1" BSPP maschio Diametro di uscita: Cilindrico 1" BSPP maschio

Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente)

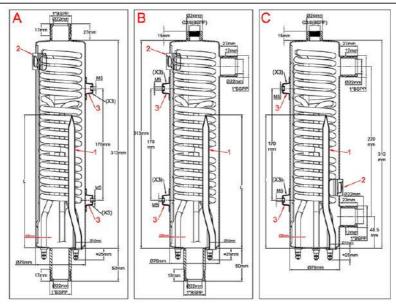
Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra.

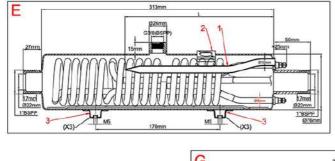
Accessori: vedere la fine di questo catalogo

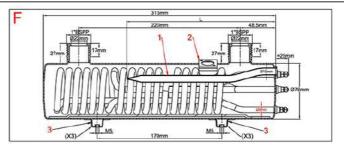
Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina 316L

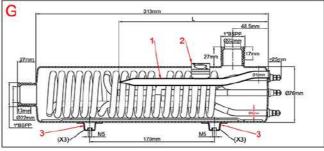
Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SU231A675G00000	А	10	8	3	230-400	3x2.5
9SU231A638G00000	А	5	8	3	230-400	3x1.25
9SU231B675G00E00	В	10	8	3	230-400	3x2.5
9SU231B638G00E00	В	5	8	3	230-400	3x1.25
9SU231C675G00E00	С	10	8	3	230-400	3x2.5
9SU231C638G00E00	С	5	8	3	230-400	3x1.25
9SU231E675G00E00	Е	10	8	3	230-400	3x2.5
9SU231E638G00E00	Е	5	8	3	230-400	3x1.25
9SU231F675G00000	F	10	8	3	230-400	3x2.5
9SU231F638G00000	F	5	8	3	230-400	3x1.25
9SU231G675G00000	G	10	8	3	230-400	3x2.5
9SU231G638G00000	G	5	8	3	230-400	3x1.25


I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.

Diametro 76 mm, lunghezza 313 mm, riscaldatori tubolari elicoidali, raccordi da 1".


Diametro (mm)	Lunghezza del serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenza massima	Tipo
76	313	Verticale o orizzontale	3	4.8kW (3×1.6kW, 5W/cm²) 9.6kW (3×3.2kW, 10W/cm²)	9SUB31




Verticale (A, B, C)

Orizzontale (E, F, G)

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Contattateci www.ultimheat.com Cat23-2-4-7

Diametro del riscaldatore: 8 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale) Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)

Connessione di ingresso: Cilindrico 1" BSPP maschio

Diametro di uscita: Cilindrico 1" BSPP maschio Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente)

Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

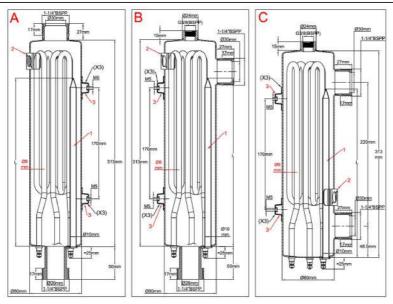
Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra.

Accessori: vedere la fine di questo catalogo

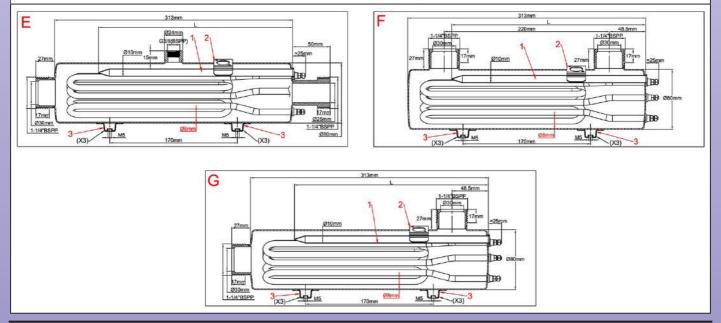
Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina 316L

					_	
Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro dell'elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SUB31A696G00000	Α	10	8	3	230-400	3x3.2
9SUB31A648G00000	Α	5	8	3	230-400	3x1.6
9SUB31B696G00E00	В	10	8	3	230-400	3x3.2
9SUB31B648G00E00	В	5	8	3	230-400	3x1.6
9SUB31C696G00E00	С	10	8	3	230-400	3x3.2
9SUB31C648G00E00	С	5	8	3	230-400	3x1.6
9SUB31E696G00E00	Е	10	8	3	230-400	3x3.2
9SUB31E648G00E00	E	5	8	3	230-400	3x1.6
9SUB31F696G00000	F	10	8	3	230-400	3x3.2
9SUB31F648G00000	F	5	8	3	230-400	3x1.6
9SUB31G696G00000	G	10	8	3	230-400	3x3.2
9SUB31G648G00000	G	5	8	3	230-400	3x1.6

I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.



Diametro 80 mm, lunghezza 313 mm, riscaldatori tubolari a forcella, raccordi da 1"1/4


Diametro (mm)	Lunghezza del serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenza massima	Tipo
80	313	Verticale o orizzontale	3	3.75kW (3×1.25kW, 5W/cm²) 7.5kW (3×2.5kW, 10W/cm²)	9SU331

Verticale (A, B, C)

Orizzontale (E, F, G)

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Contattateci www.ultimheat.com Cat23-2-4-9

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso

Riscaldatori di liquido standard

Diametro del riscaldatore: 8 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale) Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)

Connessione di ingresso: Cilindrico 1" 1/4 BSPP maschio

Diametro di uscita: Cilindrico 1" 1/4 BSPP maschio Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente)

Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

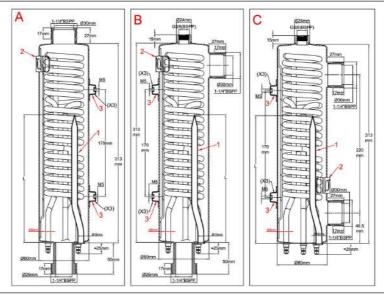
Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra.

Accessori: vedere la fine di questo catalogo

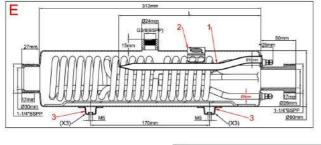
Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina 316L, raccordi da 1"1/4

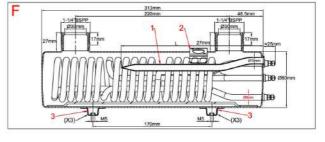
Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SU331A675G11000	А	10	8	3	230-400	3x2.5
9SU331A638G11000	А	5	8	3	230-400	3x1.25
9SU331B675G11E00	В	10	8	3	230-400	3x2.5
9SU331B638G11E00	В	5	8	3	230-400	3x1.25
9SU331C675G11E00	С	10	8	3	230-400	3x2.5
9SU331C638G11E00	С	5	8	3	230-400	3x1.25
9SU331E675G11E00	Е	10	8	3	230-400	3x2.5
9SU331E638G11E00	Е	5	8	3	230-400	3x1.25
9SU331F675G11000	F	10	8	3	230-400	3x2.5
9SU331F638G11000	F	5	8	3	230-400	3x1.25
9SU331G675G11000	G	10	8	3	230-400	3x2.5
9SU331G638G11000	G	5	8	3	230-400	3x1.25

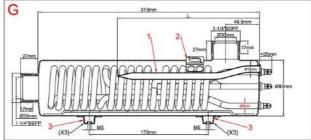
I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.


Cat23-2-4-10 Contattateci www.ultimheat.com

Diametro 80 mm, lunghezza 313 mm, riscaldatori tubolari elicoidali, raccordi da 1"1/4


Diametro (mm)	Lunghezza del serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenza massima	Tipo
80	313	Verticale o orizzontale	3	10.2kW (3×3.4kW, 5W/cm²) 5.1kW (3×1.7kW, 10W/cm²)	9SUC31




Verticale (A, B, C)

Orizzontale (E, F, G)

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Contattateci www.ultimheat.com Cat23-2-4-11

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso

Riscaldatori di liquido standard

Diametro del riscaldatore: 8 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale)
Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)
Connessione di ingresso: Cilindrico 1" 1/4 BSPP maschio (1" opzionale)
Diametro di uscita: Cilindrico 1" 1/4 BSPP maschio (1" opzionale)
Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente)

Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

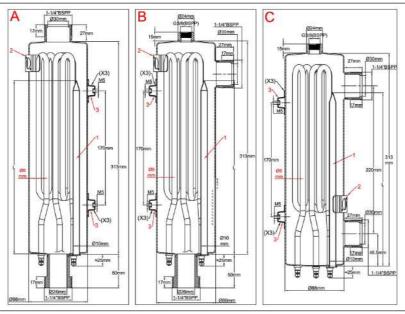
Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra.

Accessori: vedere la fine di questo catalogo

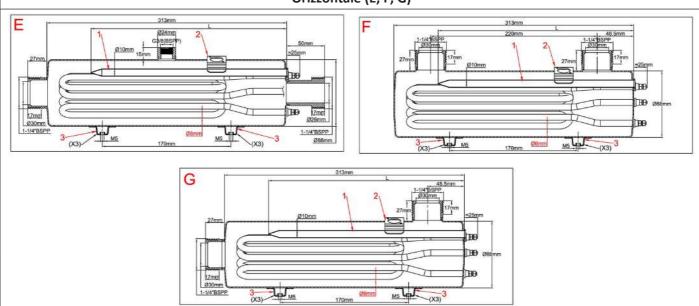
Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina 316L, raccordi da 1"1/4

Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SUC31A6A2G11000	А	10	8	3	230-400	3x3.4
9SUC31A651G11000	А	5	8	3	230-400	3x1.7
9SUC31B6A2G11E00	В	10	8	3	230-400	3x3.4
9SUC31B651G11E00	В	5	8	3	230-400	3x1.7
9SUC31C6A2G11E00	С	10	8	3	230-400	3x3.4
9SUC31C651G11E00	С	5	8	3	230-400	3x1.7
9SUC31E6A2G11E00	Е	10	8	3	230-400	3x3.4
9SUC31E651G11E00	Е	5	8	3	230-400	3x1.7
9SUC31F6A2G11000	F	10	8	3	230-400	3x3.4
9SUC31F651G11000	F	5	8	3	230-400	3x1.7
9SUC31G6A2G11000	G	10	8	3	230-400	3x3.4
9SUC31G651G11000	G	5	8	3	230-400	3x1.7

I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.


Cat23-2-4-12 Contattateci www.ultimheat.com

Diametro 88 mm, lunghezza 313 mm, riscaldatori tubolari a forcella, raccordi da 1¼"


Diametro (mm)	Lunghezza serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenza massima	Tipo
88	313	Verticale o orizzontale	3	3.75kW (3×1.25kW, 5W/cm²) 7.5kW (3×2.5kW, 10W/cm²)	9SU431

Verticale (A, B, C)

Orizzontale (E, F, G)

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Contattateci www.ultimheat.com Cat23-2-4-13

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso

Riscaldatori di liquido standard

Diametro del riscaldatore: 8 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale)
Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)
Connessione di ingresso: Cilindrico 1" 1/4 BSPP maschio (1" opzionale)
Diametro di uscita: Cilindrico 1" 1/4 BSPP maschio (1" opzionale)
Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente)

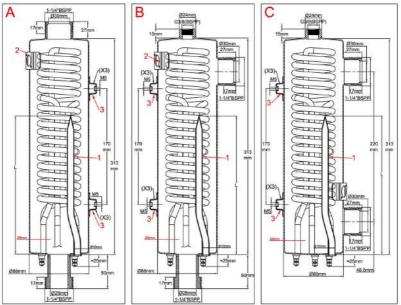
Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

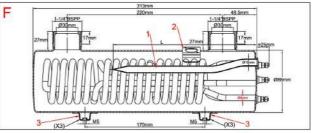
Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra. Accessori: vedere la fine di questo catalogo

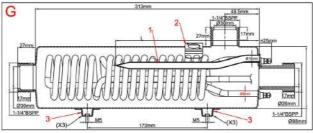
Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina 316L, raccordi da 1"1/4

Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SU431A675G11000	А	10	8	3	230-400	3x2.5
9SU431A638G11000	А	5	8	3	230-400	3x1.25
9SU431B675G11E00	В	10	8	3	230-400	3x2.5
9SU431B638G11E00	В	5	8	3	230-400	3x1.25
9SU431C675G11E00	С	10	8	3	230-400	3x2.5
9SU431C638G11E00	С	5	8	3	230-400	3x1.25
9SU431E675G11E00	Е	10	8	3	230-400	3x2.5
9SU431E638G11E00	Е	5	8	3	230-400	3x1.25
9SU431F675G11000	F	10	8	3	230-400	3x2.5
9SU431F638G11000	F	5	8	3	230-400	3x1.25
9SU431G675G11000	G	10	8	3	230-400	3x2.5
9SU431G638G11000	G	5	8	3	230-400	3x1.25

I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.


Cat23-2-4-14 Contattateci www.ultimheat.com


Diametro 88 mm, lunghezza 313 mm, riscaldatori tubolari elicoidali, raccordi da 1"1/4


Diametro (mm)	Lunghezza serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenza massima	Tipo
88	313	Verticale o orizzontale	3	5.7kW (3×1.9kW, 5W/cm²) 11.4kW (3×3.8kW, 10W/cm²)	9SUD31

Verticale (A, B, C)

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso. Orizzontale (E, F, G) E

> Contattateci Cat23-2-4-15 www.ultimheat.com

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso

Riscaldatori di liquido standard

Diametro del riscaldatore: 8 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale)
Materiale raccordi: Acciaio inossidabile 304L (316L opzionale)

Connessione di ingresso: Cilindrico 1" 1/4 BSPP maschio (1" opzionale)
Diametro di uscita: Cilindrico 1" 1/4 BSPP maschio (1" opzionale)
Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente)

Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

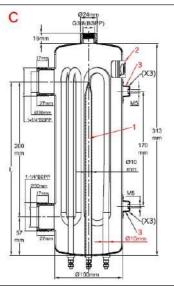
Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra.

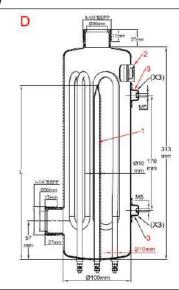
Accessori: vedere la fine di questo catalogo

Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina 316L, raccordi da 1"1/4

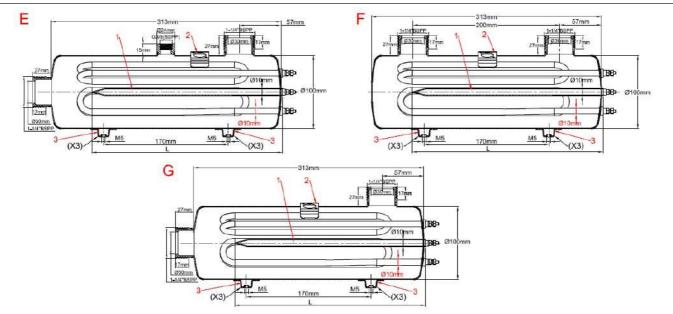
Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SUD31A6B4G11000	А	10	8	3	230-400	3x3.8
9SUD31A657G11000	А	5	8	3	230-400	3x1.9
9SUD31B6B4G11E00	В	10	8	3	230-400	3x3.8
9SUD31B657G11E00	В	5	8	3	230-400	3x1.9
9SUD31C6B4G11E00	С	10	8	3	230-400	3x3.8
9SUD31C657G11E00	С	5	8	3	230-400	3x1.9
9SUD31E6B4G11E00	Е	10	8	3	230-400	3x3.8
9SUD31E657G11E00	Е	5	8	3	230-400	3x1.9
9SUD31F6B4G11000	F	10	8	3	230-400	3x3.8
9SUD31F657G11000	F	5	8	3	230-400	3x1.9
9SUD31G6B4G11000	G	10	8	3	230-400	3x3.8
9SUD31G657G11000	G	5	8	3	230-400	3x1.9

I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.


Riscaldatori di liquido standard


Diametro 100 mm, lunghezza 313 mm, riscaldatori tubolari a forcella, raccordi da 1"1/4

Diametro (mm)	Lunghezza del serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenza massima	Tipo
100	313	Verticale o orizzontale	3	4.5kW (3×1.5kW, 5W/cm²) 9kW (3×3kW, 10W/cm²)	9SU531



Verticale (A, B, C)

Orizzontale (E, F, G)

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Contattateci www.ultimheat.com

Riscaldatori di liquido standard

Diametro del riscaldatore: 10 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale)
Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)
Connessione di ingresso: Cilindrico 1" 1/4 BSPP maschio (1" opzionale)
Diametro di uscita: Cilindrico 1" 1/4 BSPP maschio (1" opzionale)
Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente)

Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra.

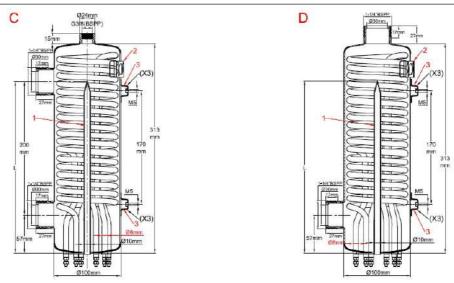
Accessori: vedere la fine di questo catalogo

Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina 316L, diametro 10 mm, raccordi da 1"1/4

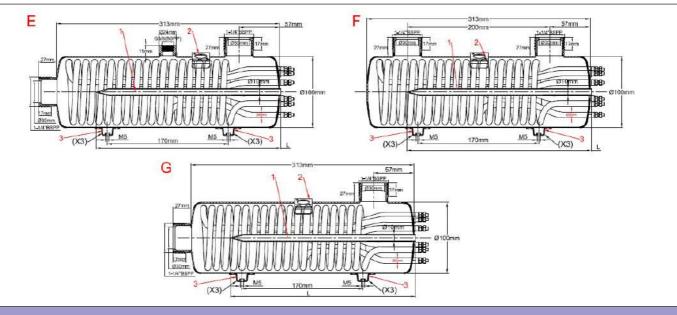
Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SU531C690Y11E00	С	10	10	3	230-400	3x3
9SU531C645Y11E00	С	5	10	3	230-400	3x1.5
9SU531D690Y11000	D	10	10	3	230-400	3x3
9SU531D645Y 11000	D	5	10	3	230-400	3x1.5
9SU531E690Y11E00	Е	10	10	3	230-400	3x3
9SU531E645Y11E00	Е	5	10	3	230-400	3x1.5
9SU531F690Y11000	F	10	10	3	230-400	3x3
9SU531F645Y11000	F	5	10	3	230-400	3x1.5
9SU531G690Y11000	G	10	10	3	230-400	3x3
9SU531G645Y11000	G	5	10	3	230-400	3x1.5

I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.

Cat23-2-4-18 Contattateci www.ultimheat.com


Riscaldatori di liquido standard

Diametro 100 mm, lunghezza 313 mm, riscaldatori tubolari elicoidali, raccordi da 1"1/4


Diametro (mm)	Lunghezza del serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenza massima	Tipo
100	313	Verticale o orizzontale	3	6.45kW (3×2.15kW, 5W/cm²) 12.9kW (3×4.3kW, 10W/cm²)	

Verticale (C, D)

Orizzontale (E, F, G)

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Riscaldatori di liquido standard

Diametro del riscaldatore: 8 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale)
Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)
Connessione di ingresso: Cilindrico 1" 1/4 BSPP maschio (1" opzionale)
Diametro di uscita: Cilindrico 1" 1/4 BSPP maschio (1" opzionale)
Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente)

Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra.

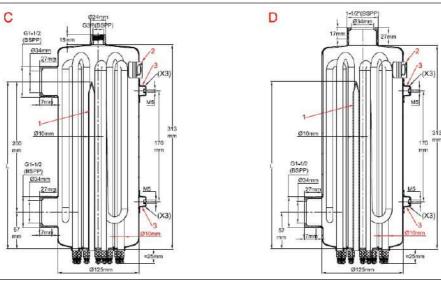
Accessori: vedere la fine di questo catalogo

Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina 316L, raccordi da 1"1/4

Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SUE31C6C9G11E00	С	10	8	3	230-400	3x4.3
9SUE31C665G11E00	С	5	8	3	230-400	3x2.15
9SUE31D6C9G11000	D	10	8	3	230-400	3x4.3
9SUE31D665G11000	D	5	8	3	230-400	3x2.15
9SUE31E6C9G11E00	Е	10	8	3	230-400	3x4.3
9SUE31E665G11E00	Е	5	8	3	230-400	3x2.15
9SUE31F6C9G11000	F	10	8	3	230-400	3x4.3
9SUE31F665G11000	F	5	8	3	230-400	3x2.15
9SUE31G6C9G11000	G	10	8	3	230-400	3x4.3
9SUE31G665G11000	G	5	8	3	230-400	3x2.15

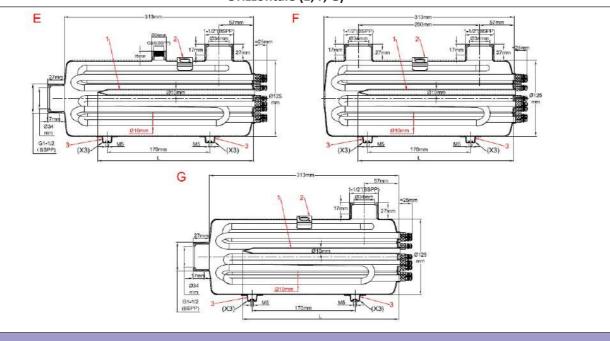
I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.

Cat23-2-4-20 Contattateci www.ultimheat.com


Riscaldatori di liquido standard

Diametro 125 mm, lunghezza 313 mm, riscaldatori tubolari a forcella, raccordi da 1"1/2

Diametro (mm)	Lunghezza del serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Potenta massima	Tipo
125	313	Verticale o orizzontale	3 o 6	9kW (3×2kW + 3 x 1 kW, 5W/cm ²) 18kW (3×4kW + 3 x 2 kW, 10W/cm ²)	9SU631



Verticale (C, D)

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Orizzontale (E, F, G)

Riscaldatori di liquido standard

Diametro del riscaldatore: 10 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3 o 6. La versione a 6 riscaldatori consente due stadi in connessione trifase.

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale)
Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)

Connessione di ingresso: Cilindrico 1" 1/2 BSPP maschio (1" 1/4 opzionale)
Diametro di uscita: Cilindrico 1" 1/2 BSPP maschio (1" 1/4 opzionale)
Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente)

Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

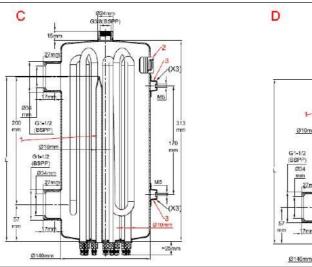
Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra.

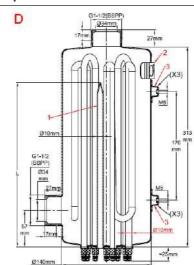
Accessori: vedere la fine di questo catalogo

Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina 316L, raccordi da 1"1/2

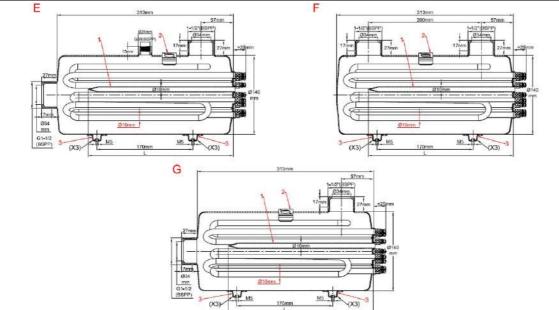
Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SU631C6R0Z22E00	С	10	10	6	230-400	3x4 + 3x2
9SU631C690Z22E00	С	5	10	6	230-400	3x2 + 3x1
9SU631D6R0Z22000	D	10	10	6	230-400	3x4 + 3x2
9SU631D690Z22000	D	5	10	6	230-400	3x2 + 3x1
9SU631E6R0Z22E00	Е	10	10	6	230-400	3x4 + 3x2
9SU631E690Z22E00	Е	5	10	6	230-400	3x2 + 3x1
9SU631F6R0Z22000	F	10	10	6	230-400	3x4 + 3x2
9SU631F690Z22000	F	5	10	6	230-400	3x2 + 3x1
9SU631G6R0Z22000	G	10	10	6	230-400	3x4 + 3x2
9SU631G690Z22000	G	5	10	6	230-400	3x2 + 3x1

I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.


Riscaldatori di liquido standard


Diametro 140, lunghezza 313 mm, riscaldatori tubolari elicoidali, raccordi da 1"1/2

Diametro (mm)	Lunghezza del serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Dotonza maccima	Tipo
140	313	Verticale o orizzontale	3 o 6	9kW (3×2kW + 3 x 1 kW, 5W/cm ²) 18kW (3×4kW + 3 x 2 kW, 10W/cm ²)	9SU731



Verticale (C, D)

Orizzontale (E, F, G)

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Riscaldatori di liquido standard

Diametro del riscaldatore: 10 mm

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3 o 6. La versione a 6 riscaldatori consente due stadi in connessione trifase.

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale)
Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)

Connessione di ingresso: Cilindrico 1" 1/2 BSPP maschio (1" 1/4 opzionale)

Diametro di uscita: Cilindrico 1" 1/2 BSPP maschio (1" 1/4 opzionale)

Ingresso e uscita dalla linea centrale: 200 mm.

Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente).

Pozzetto termico (1): Acciaio inossidabile 304L dia. 10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura. Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

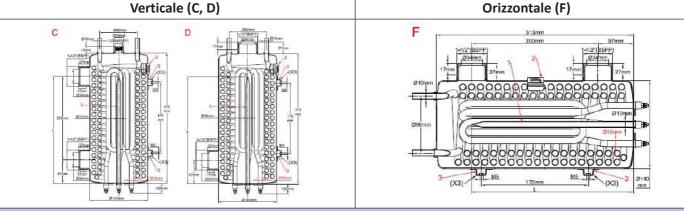
Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra.

Accessori: vedere la fine di questo catalogo

Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina in 316L

Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SU731C6R0Z22E00	С	10	10	6	230-400	3x4 + 3x2
9SU731C690Z22E00	С	5	10	6	230-400	3x2 + 3x1
9SU731D6R0Z22000	D	10	10	6	230-400	3x4 + 3x2
9SU731D690Z22000	D	5	10	6	230-400	3x2 + 3x1
9SU731E6R0Z22E00	Е	10	10	6	230-400	3x4 + 3x2
9SU731E690Z22E00	E	5	10	6	230-400	3x2 + 3x1
9SU731F6R0Z22000	F	10	10	6	230-400	3x4 + 3x2
9SU731F690Z22000	F	5	10	6	230-400	3x2 + 3x1
9SU731G6R0Z22000	G	10	10	6	230-400	3x4 + 3x2
9SU731G690Z22000	G	5	10	6	230-400	3x2 + 3x1

I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.


Cat23-2-4-24 Contattateci www.ultimheat.com

Riscaldatori di liquido standard

Diametro 140, lunghezza 313 mm, riscaldatori tubolari a forcella, raccordi da 1"1/2. Con scambiatore di calore tubolare incorporato

	metro mm)	Lunghezza del serbatoio (mm)	Montaggio	Riscaldatore tubolare Qtà	Dotonza maccima	Tipo
1	140	313	Verticale o orizzontale	3	4.5kW (3×1.5kW, 5W/cm²) 9kW (3×3kW, 10W/cm²)	9SU831

Diametro del riscaldatore: 10 mm

caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso

Materiale del riscaldatore tubolare: 316L (Incolloy 800 opzionale)

Quantità di riscaldatori tubolari: 3

Materiale del corpo: Acciaio inossidabile 304L (316L opzionale) Materiale dei raccordi: Acciaio inossidabile 304L (316L opzionale)

Connessione di ingresso: Cilindrico 1" 1/2 BSPP maschio (1" 1/4 opzionale) Diametro di uscita: Cilindrico 1" 1/2 BSPP maschio (1" 1/4 opzionale) Filettatura di sfiato dell'aria: 3/8 BSPP (sui modelli in cui è presente)

Scambiatore di calore tubolare: tubo in acciaio inossidabile 316L dia. 10 × 8.6 mm, superficie di scambio termico 4000 cm² **Pozzetto termico (1):** Acciaio inossidabile 304L dia.10×8.5 mm, lunghezza 260 mm per taglio termico (Vedere i modelli di sottogruppo per taglio termico alla fine di questo catalogo). Il pozzetto termico in rame è disponibile su richiesta. Questo pozzetto termico può essere utilizzato anche per una lampada termostatica o un sensore di temperatura.

Staffa di montaggio del termostato a disco (2): 1 staffa per termostato con coppa estesa (vedere i modelli di termostato alla fine del catalogo).

Staffe di montaggio a parete (3): 3×2 piedini M5, interasse 170 mm, per il montaggio a parete su 3 lati diversi. Le staffe M5 non utilizzate per il montaggio a parete possono essere utilizzate per la messa a terra.

Accessori: vedere la fine di questo catalogo

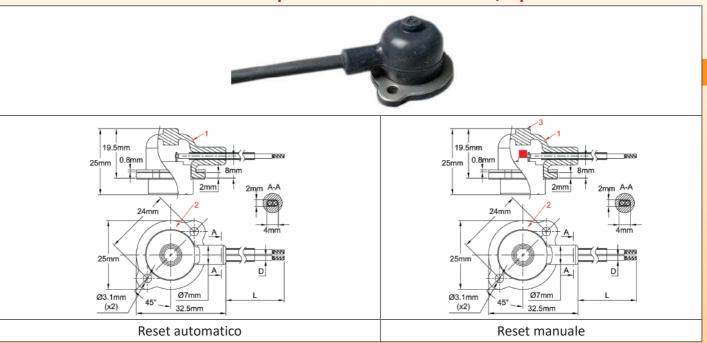
Prodotti standard, serbatoi in acciaio inossidabile 304L, riscaldatori con guaina in 316L, Scambiatore di calore tubolare SUS 316L, raccordi 1"1/2

Riferimenti	Stile	Carico superficiale (W/cm²)	Diametro elemento riscaldante	Qtà di elementi riscaldanti	Tensione	Potenza (kW)
9SU831C690Y22E00	С	10	10	3	230-400	3x3
9SU831C645Y22E00	С	5	10	3	230-400	3x1.5
9SU831D690Y22E00	D	10	10	3	230-400	3x3
9SU831D645Y22E00	D	5	10	3	230-400	3x1.5
9SU831F690Y22000	F	10	10	3	230-400	3x3
9SU831F645Y22000	F	5	10	3	230-400	3x 1.5

I valori di potenza sono i valori massimi possibili per un determinato carico superficiale. È possibile ridurre la potenza riducendo il carico superficiale.

0

Esempi di isolamenti e cablaggi



A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

Opzioni e accessori

Termostati a disco con protezione anticondensa, tipi 4RS e 49S

Questi termostati sono stati sviluppati per essere utilizzati sul corpo dei riscaldatori, in condizioni in cui è probabile la formazione di condensa o gocce d'acqua.

Il corpo del termostato è coperto da una calotta di silicone flessibile, che consente un eventuale reset manuale senza il rischio di contatto con parti sotto tensione.

Per evitare che la calotta si strappi con la manipolazione, è tenuta in posizione da una flangia in acciaio inossidabile. La coppa del termostato è in acciaio inossidabile per evitare il rischio di corrosione galvanica tra il corpo del riscaldatore e il termostato, in un ambiente umido. I termostati sono progettati per controllare la temperatura del liquido e il loro uso come sicurezza per il funzionamento a secco non è raccomandato.

Se utilizzati come dispositivo di sicurezza, quando si sono attivati, è obbligatorio individuare e riparare il guasto del circuito di riscaldamento prima di

Tappo di protezione: silicone nero (1)

Potenza elettrica nominale: 10A 250V (16A su richiesta, contattateci)

Azione: Il contatto si apre per aumento della temperatura. Disponibile a reset manuale (3) o automatico per caduta di temperatura.

I modelli a reset automatico possono essere realizzati in versione allarme, con chiusura del contatto all'aumentare della temperatura.

Temperature di apertura: Da 20 a 150°C secondo le specifiche. Le versioni più comuni utilizzate nei riscaldatori sono riportate nella tabella seguente.

Cavo di collegamento: Isolamento in FEP, due conduttori, AWG18, sotto guaina termorestringente. (Altre dimensioni e isolamento su richiesta)

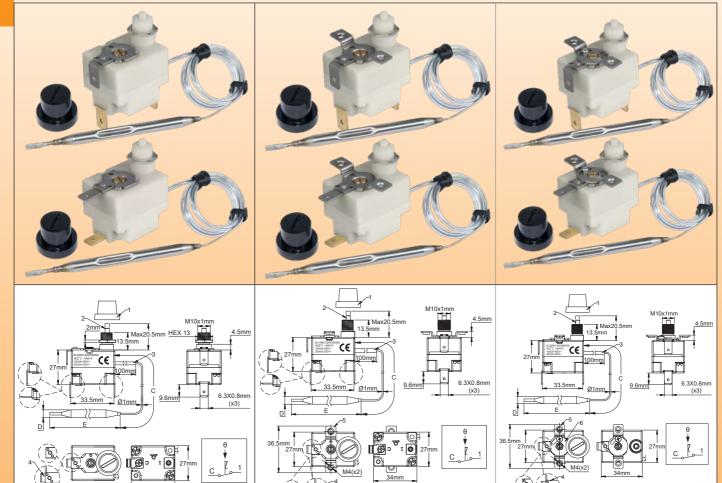
Lunghezza del cavo: 500 mm standard, altre lunghezze su richiesta.

Estremità del cavo: dotata di calzatura a crimpare.

Montaggio: Flangia in acciaio inossidabile (2), progettata per ricevere due viti M3, distanza 24 mm, per il fissaggio sulle staffe del riscaldatore installate.

Montaggio sul corpo dei serbatoi: si raccomanda di utilizzare grasso termoconduttivo tra la coppa del termostato e il serbatoio.

Riferimenti principali


Riferimenti	Temperatura di apertura (°C)	Temperatura di chiusura (°C)	Lunghezza del cavo (mm)
4RSFMD055C0B8051	131±3°C	Reset manuale	500 mm
4RSFMD065D0B8051	149±4°C	Reset manuale	500 mm
4RSFMD075D0B8051	167±4°C	Reset manuale	500 mm
4RSFMD08SD0B80S1	185±4°C	Reset manuale	500 mm
4RSFMD090D0B8051	194±4°C	Reset manuale	500 mm
49SFMD040CAB8051	104±3°C	86°C	500 mm
49SFMD055DAB8051	131±4°C	113°C	500 mm
49SFMD060DAB8051	140±4°C	122°C	500 mm
49SFMD070DAB8051	158±4°C	140°C	500 mm
49SFMD075DAB8051	167±4°C	131°C	500 mm
49SFMD095DAB8051	203±4°C	185°C	500 mm

Cat23-2-5-3 Contattateci www.ultimheat.com

0

SPNC limite alto a reset manuale, set-point fisso o regolabile, Fail-Safe, 20A. Tipo 8L

Dimensioni

8L0: montaggio M10

- 1: Tappo del pulsante di reset
 - 2: Pulsante di reset
 - 3: Guaina capillare
 - 4: Terminale di terra

8L1: 2 × M4 viti di montaggio

- 1: Tappo del pulsante di reset
 - 2: Pulsante di reset
 - 3: Guaina capillare
- 4: Terminale di terra (opzione)
- 5: Staffa di montaggio 2 × M4
- 8L2: 2 × M4 viti per il montaggio e mini quadrante di regolazione
 - 1: Tappo del pulsante di reset
 - 2: Pulsante di reset
 - 3: Guaina capillare
 - 4: Terminale di terra (opzione)
 - 5: Staffa di montaggio 2 × M4
 - 6: Mini ghiera di regolazione

Caratteristiche tecniche

Applicazioni: Protezione contro il surriscaldamento dei riscaldatori dovuto a un aumento anomalo della temperatura del liquido dovuto a un guasto del flusso. Le lampade possono essere montate all'interno di tasche standard di dia. 8.5 mm o in un pozzetto termometrico aggiuntivo aggiunto su richiesta. Sono disponibili anche raccordi passanti su capillare. Il corpo del termostato può essere installato in una copertura protettiva delle uscite degli elementi riscaldanti o in remoto in un armadio di controllo separato. Sono ripristinabili dopo lo scatto, ma è essenziale un controllo completo preventivo del circuito per trovare la causa del surriscaldamento e correggerla prima del riavvio.

Dimensioni alloggiamento: 24.7 × 33 × 26 mm (senza terminali e reset)

Lampada e capillare: acciaio inossidabile, lunghezza capillare da 250 a 1500 mm, con manicotto in PVC lungo 100 mm sul capillare. Raggio di curvatura minimo del capillare 5 mm.

Elemento di rilevamento della temperatura: lampada e capillare riempiti di liquido.

Terminali: terminali a innesto rapido 6.35×0.8 (viti M4 disponibili anche su richiesta). I terminali possono essere verticali, orizzontali o piegati a 45° .

Regolazione: impostazione fissa, sigillato o regolabile tramite mini-quadrante.

Ripristino manuale: Fail-Safe, pulsante di reset ad accesso frontale.

nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso

Azione del contatto con Fail-Safe a bassa temperatura: temperature inferiori a -10°C (14°F) attiveranno il ripristino

manuale.

Montaggio: boccola anteriore, filettatura M10 × 1 **Valore nominale:** 20(4)A 250V/16 (4)A 400VCA.

Contatti: Contatto a scatto SPNC.

Temperatura ambiente massima sul corpo: 115°C (239°F). Grado di inquinamento accettabile per l'uso a 250V: 3. Grado di inquinamento accettabile per l'uso a 400V: 3.

Riferimenti principali con capillare da 750 mm * e terminali verticali da 6.35 mm**

Riferimenti, montaggio M10	Riferimenti, 2 × M4 per montaggio su staffa	Riferimenti, 2 staffe di montaggio M4 e mini quadrante	Temperatura di calibrazione (°C/°F)	Diametro della lampada (mm)	Lunghezza della lampada(E, mm)	Temperatura max sulla lampada (°C/°F)
8L0070105AG60000	8L1070105AG60000	8L2070105AG60000	70 +0/ -8°C (158 +0/ -14.4°F)	6	77	105°C/221°F
8L0080105AG60000	8L1080105AG60000	8L2080105AG60000	80 +0/ -8°C (176 +0/ -14.4°F)	6	77	105°C/221°F
8L0090115AG60000	8L1090115AG60000	8L2090115AG60000	90 +0/ -8°C (194 +0/ -14.4°F)	6	77	115°C/239°F
8L0100120AG60000	8L1100120AG60000	8L2100120AG60000	100 +0/ -8°C (212 +0/ -14.4°F)	6	77	120°C/248°F
8L0110135AG60000	8L1110135AG60000	8L2110135AG60000	110 +0/ -8°C (230 +0/ -14.4°F)	6	77	135°C/275°F
8L0120145AG60000	8L1120145AG60000	8L2120145AG60000	120 +0/ -8°C (248 +0/ -14.4°F)	6	77	145°C/293°F
8L0130155AG60000	8L1130155AG60000	8L2130155AG60000	130 +0/ -8°C (266 +0/ -14.4°F)	6	74	155°C/311°F
8L0150175AG60000	8L1150175AG60000	8L2150175AG60000	150 +0/ -8°C (302 +0/ -14.4°F)	6	74	175°C/347°F
8L0170195AG50000	8L1170195AG50000	8L2170195AG50000	170 +0/ -10°C (338 +0/ -18°F)	5	70	195°C/383°F
8L0190215AG50000	8L1190215AG50000	8L2190215AG50000	190 +0/ -10°C (374 +0/ -18°F)	5	70	215°C/419°F
8L0210235AG40000	8L1210235AG40000	8L2210235AG40000	210 +0/ -12°C (410 +0/ -22°F)	4	65	235°C/455°F
8L0230255AG40000	8L1230255AG40000	8L2230255AG40000	230 +0/ -12°C (446 +0/ -22°F)	4	65	255°C/490°F

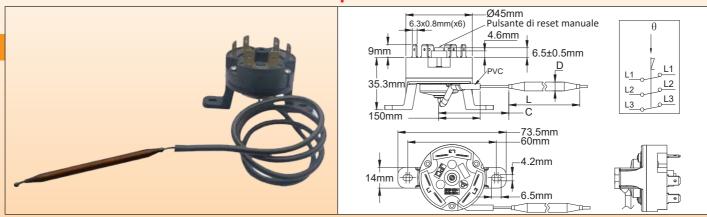
^{*} Capillare 250 mm: sostituire G con A nel riferimento; Capillare 1 m: sostituire G con J nel riferimento; Capillare 1.5 m: sostituire G con O nel riferimento.

* Opzione terminale di terra: sostituire 0000 alla fine dei riferimenti con 0G00.

È possibile impostare una temperatura di setpoint fino a 500 °C, senza intervento di sicurezza (failsafe). Richiedere una scheda tecnica specifica.

Accessori (devono essere ordinati separatamente, vengono spediti assemblati sul capillare)

Raccordo capillare nichelato per l'utilizzo su liquidi fino a 130°C (guarnizione capillare in NBR) *	66RL41LS30000000	
Raccordo capillare nichelato per l'utilizzo su liquidi fino a 230°C (guarnizione capillare in FKM) *	66RL41LS20000000	2.5mm 11mm HEX22


Può essere realizzato anche in acciaio inox 304, richiedere scheda tecnica

Aggiornamento 2025/07/29

^{**} Terminali orizzontali da 6.35, sostituire 0000 con 2000 nel riferimento; Terminali piegati a 45° da 6.35, sostituire 0000 con 1000 nel riferimento. Terminali a vite, richiedere la scheda tecnica.

preavviso

Limite alto a 3 poli a reset manuale, Fail-Safe **Tipo 82**

Applicazioni: Protezione contro il surriscaldamento dei riscaldatori a causa di un aumento anomalo della temperatura del liquido dovuto a un'interruzione del flusso. Il montaggio dei bulbi può essere effettuato all'interno di tasche standard dia. 8.5 mm, oppure in un pozzetto aggiuntivo aggiunto su richiesta. Il corpo del termostato può essere installato in una copertura protettiva delle uscite degli elementi riscaldanti, oppure a distanza in un armadio di controllo separato. I termostati sono ripristinabili dopo l'intervento, ma è necessario un controllo completo del circuito per individuare la causa del surriscaldamento e correggerla prima del riavvio.

Dimensioni dell'alloggiamento: diametro 45 × 44.3 mm

Capillare: rame, lunghezza del capillare 250 mm o 900 mm, manicotto in PVC lungo 150 mm sul capillare. Raggio di curvatura minimo del capillare 5 mm.

Per motivi tecnici, si sconsiglia di utilizzare capillari di lunghezza superiore a 900 mm.

Lampadina: Rame, diametro. 6 mm.

Elemento di rilevamento della temperatura: Gruppo termostatico a riempimento liquido, la cui ebollizione provoca l'intervento del contatto.

Pertanto, a differenza dei sistemi a riempimento liquido, questi termostati sono sensibili alla pressione atmosferica e il loro tempo di reazione è più lento.

Terminali: Terminali a innesto rapido 6.35 × 0.8

Regolazione: impostazione fissa

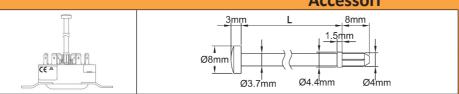
Montaggio: Gambe posteriori, 2 viti M4, distanza fori 60 mm

Reset manuale: azione di sicurezza, pulsante centrale

Valori nominali: 3 × 16A 250VAC, 3 × 10A 400VAC, resistivo (10000 cicli)

3 × 25A 250VAC, 3 × 16A 400VAC (300 cicli)

Contatti: tripolari, aperti all'aumento della temperatura (contatto a scatto), a doppia interruzione.


Temperatura ambiente massima sulla testa: 115°C (239°F)

Riferimenti principali

Micrimenti principan							
Riferimento	Temperatura di calibrazione (°C/ °F)	Temperatura minima azzerabile (°C/ °F)	Lunghezza capillare (mm)	Diametro della lampada (mm)	Lunghezza della lampada (mm)	Temperatura massima sulla lampada (°C/ °F)	
820060090Cl610F1	60±5°C/ 140±9°F	20°C/ 68°F	900	6	50	90°C/ 194°F	
820060090CA610F1	60±5°C/ 140±9°F	20°C/ 68°F	250	6	50	90°C/ 194°F	
820070100Cl610F1	70±5°C/ 158±9°F	30°C/ 86°F	900	6	50	100°C/ 212°F	
820080110Cl610F1	80±5°C/ 176±9°F	40°C/ 104°F	900	6	50	110°C/ 230°F	
820090120Cl610F1	90±5°C/ 194±9°F	50°C/ 122°F	900	6	50	120°C/ 248°F	
820110140Cl610F1	110±5°C/ 230±9°F	70°C/ 158°F	900	6	50	140°C/ 284°F	
820130160Cl610F1	130±6°C/ 266±10.8°F	90°C/ 194°F	900	6	60*	160°C/ 320°F	
820150180Cl610F1	150±7°C/ 302±12.6°F	110°C/ 230°F	900	6	60*	180°C/ 356°F	
820170200Cl610F1	170±7°C/ 338±12.6°F	130°C/ 266°F	900	6	60*	200°C/ 392°F	

Lampada del cilindro

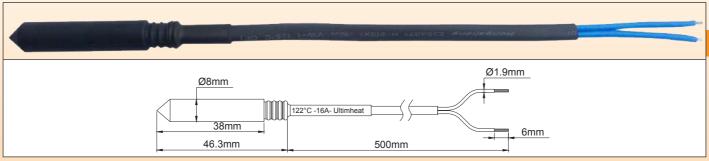
Accessori

Aste di ripristino manuale a lunga distanza

L	Riferimento		
114	664CLR114		
30	664CLR030		

Altre lunghezze su richiesta

Aggiornamento 2025/07/10


sono solo a titolo indicativo e possono essere modificate senza causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in

⁻ Il setpoint massimo per il ripristino manuale è di 212°C ±12°C. Richiedere schede tecniche specifiche.

Opzioni e accessori

Fusibili termici cablati, da inserire in pozzetti termici con diametro interno di 8.5 mm, Tipo 5MA 3-F

Applicazioni: protezione contro il surriscaldamento dei riscaldatori di liquidi quando si verifica una condizione di funzionamento a secco.

Questi tagli termici sono progettati per adattarsi alle tasche con Diametro Interno 8.5 montate di serie nei riscaldatori di liquidi. Può essere possibile sostituirli quando si sono attivati, ma ciò richiede un controllo completo di tutti i componenti del riscaldatore, poiché il surriscaldamento importante dovuto alla mancanza di acqua potrebbe aver danneggiato altri componenti.

Pellet fusibile: composto organico

indicativo e possono essere modificate senza preavviso

tecniche sono

A causa del continuo miglioramento dei nostri prodotti, i disegni,

Meccanismo: pellet mobile azionato da una molla rilasciata dalla fusione del pellet stesso

Protezione: mediante guaina isolante in silicone, dia. 8 mm

Bloccaggio nella tasca: tramite gommino in silicone

Corrente nominale: 16A 250V

La corrente nominale è la corrente massima che il fusibile può sopportare senza aprirsi o deteriorarsi se sottoposto a una temperatura nota come "temperatura di mantenimento" (Th) per un periodo di tempo limitato.

<u>Temperatura di mantenimento (Th):</u> il fusibile non deve aprirsi o distruggersi se sottoposto a una temperatura pari a Th-6°C per un periodo di 168 ore in condizioni di tensione e corrente nominali.

Temperatura nominale di funzionamento (Tf): È la temperatura di apertura del fusibile in un forno di calibrazione, se sottoposto a una corrente inferiore a 10 mA, quando la temperatura aumenta a una velocità compresa tra 0.5 e 1°C/min. In queste condizioni, la temperatura di apertura non deve essere inferiore a Tf-10°C o superiore a Tf. Questa è la temperatura di esercizio Tf, stampata sul fusibile e sulla guaina protettiva esterna dei conduttori.

<u>Temperatura massima (Tm):</u> è la temperatura massima sopportata dal fusibile dopo l'apertura senza perdere le sue proprietà isolanti e meccaniche.

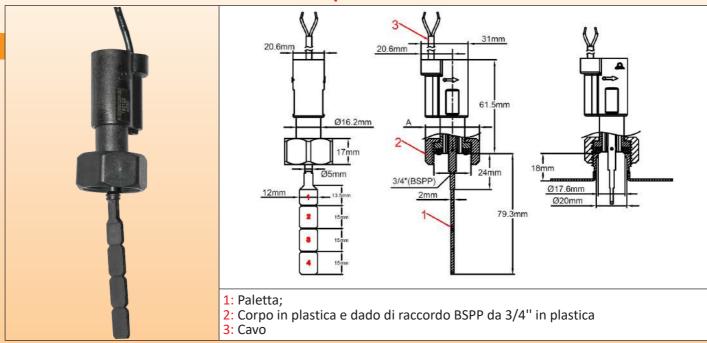
Questa caratteristica è fondamentale nelle applicazioni con riscaldatori di liquidi, per determinare la giusta posizione del TCO ed evitare la sua distruzione e la riattivazione del circuito elettrico a causa del superamento della temperatura.

Tensione di isolamento tra i contatti aperti: ≥500V

Resistenza di isolamento tra i contatti aperti: ≥2 0.2 MΩ @500V

Lunghezza dei conduttori: 500 mm.

Conduttori: Isolamento primario FEP 300V, calibro 1 mm² (AWG18), in guaina poliolefinica.


In rosso: temperature standard disponibili a magazzino

Riferimenti principali

Riferimenti Temperatura nominale di funzionamento °C/°F (Tf)		Temperatura di mantenimento °C/°F (Th)	Temperatura massima °C/°F (Tm)
5MA3SPF070F18500	73°C/163.4°F	45°C/113°F	115°C/239°F
5MA3SPF077F18500	79°C/174.2°F	52°C/125.6°F	125°C/257°F
5MA3SPF084F18500	85°C/185°F	57°C/134.6°F	125°C/257°F
5MA3SPF091F18500	94°C/201.2°F	66°C/150.8°C	140°C/284°F
5MA3SPF096F18500	99°C/210.2°F	71°C/159.8°F	140°C/284°F
5MA3SPF106F18500	108°C/226.4°F	77°C/170.6°F	145°C/293°F
5MA3SPF109F18500	113°C/235.4°F	84°C/183.2°F	150°C/302°F
5MA3SPF121F18500	122°C/251.6°F	94°C/201.2°F	175°C/347°F
5MA3SPF129F18500	133°C/271.4°F	101°C/213.8°F	175°C/347°F
5MA3SPF139F18500	142°C/287.6°F	114°C/237.2°F	185°C/365°F
5MA3SPF152F18500	157°C/314.6°F	127°C/260.6°F	195°C/383°F
5MA3SPF165F18500	167°C/332.6°F	130°C/266°F	205°C/401°F
5MA3SPF169F18500	172°C/341.6°F	145°C/293°F	215°C/419°F
5MA3SPF182F18500	184°C/363.2°F	156°C/312.8°F	225°C/437°F
5MA3SPF188F18500	192°C/377.6°F	164°C/327.2°F	245°C/473°F
5MA3SPF216F18500	216°C/420.8°F	189°C/372.2°F	280°C/536°F
5MA3SPF227F18500	227°C/440.6°F	190°C/374°F	295°C/563°F
5MA3SPF240F18500	240°C/464°F	190°C/374°F	305°C/581°F

0

Interruttori a paletta, interruttore reed, collegamento via cavo Tipo R1X

Questi dispositivi sono progettati per essere montati su tubi da 1", 1" 1/4" e 1" 1/2 di lunghezza 18 mm, su un raccordo maschio 3/4" BSPP. Sono compatibili con le applicazioni dei riscaldatori di liquidi di questo catalogo.

Il loro basso grado di commutazione elettrica obbliga a utilizzarli nei circuiti elettronici o nelle bobine dei contattori. La loro funzione è quella di consentire l'eccitazione del riscaldatore quando il flusso è sufficiente e di interrompere il riscaldamento se il flusso scende al di sotto di un valore specificato. Le soglie di rilevamento sono variabili e vengono impostate in base alle applicazioni e alle apparecchiature.

Principali utilizzi: La posizione di montaggio consigliata è su tubi orizzontali, ma può essere montato in qualsiasi altra posizione, con una piccola deriva del valore di calibrazione.

Principio di funzionamento: Paletta magnetica bilanciata montata perpendicolarmente al flusso e che attiva un interruttore reed attraverso la parete. Il ritorno della paletta avviene per azione magnetica, senza molla. Nessuna guarnizione o liquido può passare tra il sistema di tubazioni e il contatto elettrico. Non deve essere utilizzato per acqua contenente particelle magnetiche o liquidi ad alta viscosità, che bloccano il movimento della paletta.

Regolazione: Regolazione fissa, non regolabile dall'utente

Albero della paletta: Titanio, che garantisce un'eccezionale resistenza alla corrosione e una maggiore durata meccanica. Materiale dell'alloggiamento principale: PPO, rinforzato in fibra di vetro per una maggiore resistenza alla pressione e alla temperatura, utilizzabile con acqua potabile.

Paletta: PPO, larghezza 12 mm

Montaggio del tubo: Dado di raccordo rinforzato in fibra di vetro, 3/4 BSPP, montaggio su raccordo maschio 3/4 BSPP con guarnizione. Coppia di **serraggio raccomandata:** 7±1 N·m

Guarnizione: NBR

Potenza elettrica nominale: Max 1A, Max 70W, Max 250V, carico resistivo. L'uso su circuiti induttivi riduce la potenza elettrica. Si consiglia di proteggere l'interruttore reed con un dispositivo di protezione dei contatti quando viene utilizzato con carichi induttivi.

Tipo di contatto elettrico: Normalmente aperto, si chiude per aumento del flusso

Compatibilità con i liquidi: Per l'uso con acqua pulita e liquidi senza particelle magnetiche e senza incompatibilità chimica con PPO e titanio.

Pressione nominale a 20°C: 1MPa (Pn10)

Intervallo di temperatura del liquido: da 5 a 100°C (nessuna condizione di gelo all'interno del tubo)

Intervallo di temperatura ambiente: da 5 a 80°C

Protezione dall'ingresso: IP65

Tolleranze di calibrazione: +/-15% (sulla forza operativa della paletta alla fine della paletta 1) **Connessione elettrica:** 2 × cavo AWG24 (0.2 mm²), isolamento in PVC, T80°, stile UL2464.

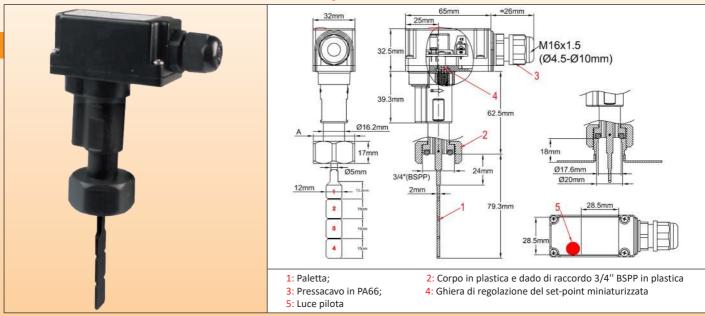
Istruzioni per l'installazione: Controllare attentamente l'orientamento della paletta: La freccia sull'alloggiamento deve essere esattamente parallela al tubo e nella direzione del flusso.

Accessori: Raccordo in acciaio inossidabile da 3/4" per la saldatura dei tubi

Opzioni (MOQ applicabile): cavo con connettore o terminali, cavo di lunghezza diversa, dado di raccordo BSPP da 3/4" nichelato, scatola di connessione in plastica impermeabile.

causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso

Opzioni e accessori


Riferimenti principali, con cavo da 2 metri*

Knermenti principali, con cavo da 2 metri						
Configurazioni	227mm 13mm	827mm (1) 11.7mm	838mm (1-1/4') 20.7mm	036mm (1-1/47) - 5.66mm		
	27 mm (1"), paletta A1	27 mm (1"), paletta B1	36 mm (1"1/4) paletta A1	36 mm (1"1/4) paletta A1+2		
Chiusura su aumento del flusso	22.5 L/min	25 L/min	46 L/min	23 L/min		
Apertura per diminuzione del flusso	19 L/mi	22.5 L/min	43.5 L/min	20.5 L/min		
Riferimenti	R1X671034G35N200	R1X671234G35N200	R1X671034G35N200	R1X672650G35N200		
Configurazioni	356mm (1-1/4") - 5 6mm	042mm (1-1/2') - 26.7mm	842mm (1-1/2')	042mm (1-1/2')		
	36 mm (1"1/4) paletta C2	42 mm (1"1/2) paletta A1	42 mm (1"1/2) paletta A1+2	42 mm (1"1/2) paletta C2		
Chiusura su aumento del flusso	30 L/min	65 L/min	33 L/min	40 L/min		
Apertura per diminuzione del flusso	27.5 L/min	63 L/min	31 L/min	37.5 L/min		

^{*} Forza di calibrazione impostata a 7 gr, misurata all'estremità della paletta N°1 o in una posizione di lunghezza equivalente su altri modelli. (=la metà dell'intervallo di regolazione possibile). Valori medi a titolo indicativo. Il valore esatto deve essere specificato al momento dell'ordine. Tolleranze standard ±15%

0

Flussostati a paletta, con relè SPDT 16A integrato e scatola di connessione, Tipo RAX

Questi dispositivi sono progettati per essere montati su tubi da 1", 1" 1/4"e 1" 1/2 di lunghezza 18 mm, su un raccordo maschio 3/4" BSPP. Sono compatibili con le applicazioni dei riscaldatori di liquidi di questo catalogo.

Il relè di potenza incorporato da 16A 250V consente di commutare direttamente la potenza di riscaldatori di liquidi fino a 3500W, 230V. La loro funzione è quella di consentire l'accensione del riscaldatore quando il flusso è sufficiente e di interrompere il riscaldamento se il flusso scende al di sotto di un valore specificato. Le soglie di rilevamento sono variabili e vengono impostate in base alle applicazioni e alle apparecchiature.

Principali utilizzi: La posizione di montaggio consigliata è su tubi orizzontali, ma può essere montato in qualsiasi altra posizione, con una piccola deriva del valore di calibrazione.

Principio di funzionamento: Paletta magnetica bilanciata montata perpendicolarmente al flusso e che attiva un interruttore reed attraverso la parete. Il ritorno della paletta avviene per azione magnetica, senza molla. Nessuna guarnizione o liquido può passare tra il sistema di tubazioni e il contatto elettrico. Non deve essere utilizzato per acque contenenti particelle magnetiche o liquidi ad alta viscosità, che bloccano il movimento della paletta.

Regolazione: Regolazione fissa. Se necessario, può essere leggermente modificata sul campo da un installatore professionista.

Albero della paletta: Titanio, che garantisce un'eccezionale resistenza alla corrosione e una maggiore durata meccanica.

Materiale dell'alloggiamento principale: PPO, rinforzato in fibra di vetro per una maggiore resistenza alla pressione e alla temperatura, utilizzabile con acqua potabile.

Paletta: PPO, larghezza 12 mm

Montaggio del tubo: Dado di raccordo rinforzato in fibra di vetro, 3/4 BSPP, montaggio su raccordo maschio 3/4 BSPP con guarnizione.

Coppia di serraggio consigliata: 7±1N·m

Guarnizione: NBR

Potenza elettrica nominale: Relè di potenza, SPDT16A Resistivo, 230V.

Alimentazione: 230V è standard. Altre tensioni (115VCA, 24VCA o CC) su richiesta.

Luce pilota: rossa (verde in opzione), collegata al contatto del relè di potenza che si chiude per aumento del flusso.

Connessione elettrica: su blocco di connessione a vite 5 x 2.5 mm². Connettori disponibili su richiesta.

Compatibilità con i liquidi: Da utilizzare con acqua e liquidi puliti senza particelle magnetiche e senza incompatibilità chimica con PPO e titanio.

Pressione nominale a 20°C: 1 MPa (Pn10)

Intervallo di temperatura del liquido: da 5 a 100°C (nessuna condizione di gelo all'interno del tubo)

Intervallo di temperatura ambiente: da 5 a 80°C

Protezione dall'ingresso: IP65

Tolleranze di calibrazione: +/-15% (sulla forza operativa della paletta alla fine della paletta 1) **Connessione elettrica:** 2 x cavo AWG24(0.2mm²), isolamento in PVC, T80°, stile UL2464

Istruzioni per l'installazione: Controllare attentamente l'orientamento della paletta: La freccia sull'alloggiamento deve essere esattamente parallela al tubo e nella direzione del flusso.

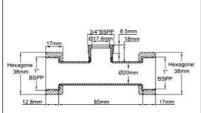
Accessori: Raccordo in acciaio inossidabile da 3/4" per la saldatura dei tubi

Opzioni (MOQ applicabile): dado di raccordo 3/4" BSPP nichelato

preavviso le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza causa del continuo miglioramento dei nostri prodotti, i disegni,

2

Opzioni e accessori


Riferimenti principali*

Kileriniena principan					
Configurazioni	927mm 15mm 11.7mm	027mm 11.7mm	(3)5mm (1-14) 20.7mm	036mm (1-14') 5.65mm	
	27 mm (1"), paletta A1	27 mm (1"), paletta B1	36 mm (1"1/4) paletta A1	36 mm (1"1/4) paletta A1+2	
Chiusura su aumento del flusso	22.5 L/min	25 L/min	46 L/min	23 L/min	
Apertura per diminuzione del flusso	19 L/min	22.5 L/min	43.5 L/min	20.5 L/min	
Riferimenti	RAX671034G31N00E	RAX671234G31N00E	RAX671034G31N00E	RAX67265QG31N00E	
Configurazioni	5.5cm (1-147)	342mm (1-1/2) 26.7mm	042mm 11.6mm 11.6mm	6-J2mm (1-1/2')	
	36 mm (1"1/4) paletta C2	42 mm (1"1/2) paletta A1	42 mm (1"1/2) paletta A1+2	42 mm (1"1/2) paletta C2	
Chiusura su aumento del flusso	30 L/min	65 L/min	33 L/min	40 L/min	
Apertura per diminuzione del flusso	27.5 L/min	63 L/min	31 L/min	37.5 L/min	
110330					

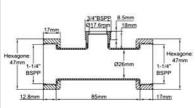
^{*} Forza di calibrazione impostata a 7 gr, misurata all'estremità della paletta N°1 o in una posizione di lunghezza equivalente su altri modelli. (=la metà dell'intervallo di regolazione possibile). Valori medi a titolo indicativo. Il valore esatto deve essere specificato al momento dell'ordine. Tolleranze standard ±15%

Accessori per flussostato

Raccordi a T a dado libero per il montaggio su riscaldatori con raccordi maschi 1"BSPP. Consentono di aggiungere facilmente un flussostato in un circuito.

Raccordo per flussostato: 3/4" BSPP maschio,

compatibile con le serie RAX e R1X


Dadi: ottone forgiato, imperdibili Corpo: acciaio inossidabile, saldato a TIG.

Foro: 20 mm

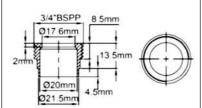
Distanza tra le superfici di tenuta (L): 85 mm

Riferimento in 304L	6R1T34208510S
Riferimento in 316L	6R1T34208510T

Raccordi a T dado libero per il montaggio su riscaldatori con raccordi maschi da 1" 1/4 BSPP. Consentono di aggiungere facilmente un flussostato in un circuito.

Raccordo per flussostato: 3/4" BSPP maschio,

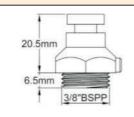
compatibile con le serie RAX e R1X Dadi: ottone forgiato, imperdibili


Corpo: acciaio inossidabile, saldato a TIG.

Foro: 26 mm

Distanza tra le superfici di tenuta (L): 85 mm

Riferimento in 304L	6R1T34268514S
Riferimento in 316L	6R1T34268514T


Raccordi per saldature su tubi. Consentono di aggiungere un flussostato in un circuito dopo aver forato i tubi esistenti. Raccordo per flussostato: 3/4" BSPP maschio,

compatibile con le serie RAX e R1X Materiale: acciaio inossidabile. Diametro del foro: 21.5 mm

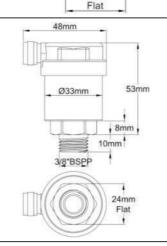
Riferimento in 304L	6R1P3419S
Riferimento in 316L	6R1P3419T

Opzioni di sicurezza idraulica

Spurgo manuale dell'aria (sfiato) *

Si adatta ai raccordi femmina da 3/8" utilizzati nei riscaldatori standard.

Da assemblare con guarnizione piatta in fibra o con O-Ring in NBR. Se viene utilizzato contemporaneamente a una valvola di sicurezza, è necessario aggiungere un secondo raccordo sui serbatoi standard.


Materiale: Ottone, nichelato Filettatura: 3/8 " BSPP

Riferimento in ottone

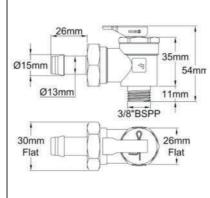
69SUPAM38N

A causa del continuo miglioramento dei nostri prodotti, i disegni, le descrizioni e le caratteristiche utilizzate in queste schede tecniche sono solo a titolo indicativo e possono essere modificate senza preavviso.

21mm

Spurgo automatico dell'aria (sfiato) *

Si adatta ai raccordi femmina da 3/8" utilizzati nei riscaldatori standard.


Da assemblare con guarnizione piatta in fibra. Se viene utilizzato contemporaneamente a una valvola di sfiato, è necessario aggiungere un secondo raccordo sui serbatoi standard.

Materiale: Ottone Filettatura: 3/8 " BSPP

Riferimento in ottone nichelato

69SUPAA38B

Valvola di sicurezza *

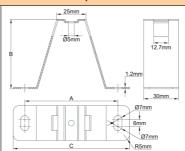
Si adatta ai raccordi femmina da 3/8" utilizzati nei riscaldatori standard.

Da assemblare con guarnizione piatta in fibra. Se viene utilizzata contemporaneamente a uno sfiato automatico o manuale, è necessario aggiungere un secondo raccordo sui serbatoi standard.

Calibrazione: 3Bar Materiale: Ottone Filettatura: 3/8 " BSPP

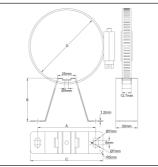
Riferimento in ottone 69SUSS0338B

_


Varie opzioni

Riscaldatore di tipo OEM

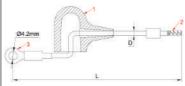
Le opzioni presentate in questa pagina riguardano solo i componenti standard. Per i prodotti OEM esistono molte altre possibilità per quanto riguarda serbatoi, raccordi, sistemi di montaggio, tipi di cablaggio, ecc... Saremo lieti di rispondere a tutte le richieste corredate da specifiche.



Piedini a vite

Questi piedini vengono fissati con una vite sulle staffe di montaggio saldate sui serbatoi standard. Permettono di distanziare i serbatoi dalla parete di montaggio. Sono disponibili in due misure di base **Materiale:** Acciaio inossidabile 304 o 201

Α	В	SS	Riferimenti
70	40	304	69SUSL7040S
85	70	304	69SUSL8570S
70	40	201	69SUSL7040V
85	70	201	69SUSL8570V



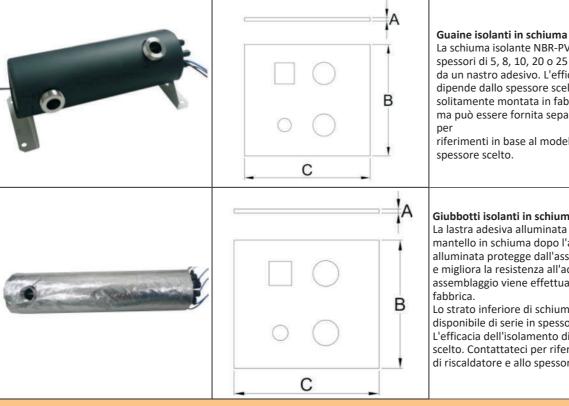
Morsetto del piedino

Questi piedini, identici alla serie precedente, sono fissati con un morsetto sui serbatoi. Consentono di distanziare i serbatoi dalla parete di montaggio. Sono disponibili in due misure di base. Utilizzare un morsetto di diametro appropriato.

Riferimenti: vedi sopra (il morsetto non è fornito)

Fili dell'elemento riscaldante

Questi sottogruppi sono destinati a essere montati sui terminali a vite standard M4 (3) dell'elemento di riscaldamento del serbatoio. Il tappo in silicone (1) protegge dal contatto con le mani e dalla condensa. Sono dotati di calzari per cavi (2) Il calibro del filo


(1 mm², 1.5 mm², 2.5 mm², 4 mm² o AWG18, AWG15, AWG14, AWG12), il tipo di isolamento (FEP, XLPE, PVC), la lunghezza e il colore devono essere specificati al momento dell'ordine.

Riferimenti dei modelli usuali

Calibro	Colore	Isolamento	Lunghezza	Riferimenti
AWG18	black	FEP, 300V, 180°	1m	69SUFRG18300B100
AWG18	blue	FEP, 300V, 180°	1m	69SUFRG18300L100
AWG18	yellow/ green	FEP, 300V, 180°	1m	69SUFRG18300V100

Cat23-2-5-14 Contattateci www.ultimheat.com

Varie opzioni

La schiuma isolante NBR-PVC è disponibile di serie in spessori di 5, 8, 10, 20 o 25 mm. Il mantello è chiuso da un nastro adesivo. L'efficacia dell'isolamento dipende dallo spessore scelto. Questa guaina è solitamente montata in fabbrica sul riscaldatore, ma può essere fornita separatamente. Contattateci

riferimenti in base al modello di riscaldatore e allo

Giubbotti isolanti in schiuma rivestita di alluminio La lastra adesiva alluminata viene incollata sul mantello in schiuma dopo l'assemblaggio. La lastra alluminata protegge dall'assorbimento dell'acqua e migliora la resistenza all'accensione. Questo assemblaggio viene effettuato esclusivamente in

Lo strato inferiore di schiuma isolante NBR-PVC è disponibile di serie in spessori di 5, 8, 10, 20 o 25 mm. L'efficacia dell'isolamento dipende dallo spessore scelto. Contattateci per riferimenti in base al modello di riscaldatore e allo spessore scelto.

Contattateci Cat23-2-5-15 www.ultimheat.com

25

Raccolta dei cataloghi su

www.ultimheat.com

Produttore di componenti elettromeccanici & sotto-gruppi di riscaldamento OEM

- Termostati meccanici
- Sicurezze meccaniche unipolari & tripolari Flussostati
- Termostati & sicurezze ATEX
- Flusso attraverso riscaldatori di liquido
- Riscaldatori ad immersione
- Elementi riscaldanti per aria e liquidi
- · Blocchi di connessione

- Alloggiamenti per ambienti corrosivi
- Interruttori di livello.
- Pressostati e interruttori pneumatici
- Collegamenti fusibili e meccanismi di rilevamento incendio
- Attrezzature per il tracciamento
- Soluzioni personalizzate

I DI LIQUIDO A FLUSSO CONTINUO DA INCORPORAR